Если не клюет рыба что делать. Почему рыба не клюёт шесть причин бесклёвья рыбы. Какую рыбу ловить при пониженном давлении

Акты химического превращения происходят при непосредственном контакте реагирующих компонентов (молекул, атомов, радикалов), но только в тех случаях, когда их энергия превышает определенный энергетический предел, называемый энергией активации Е а. Изобразим графически изменение энергии реагирующих компонентов (горючего и окислителя) и продуктов реакции при горении (рис.1.)

Изобразим графически изменение энергии реагирующих компонентов (горючего и окислителя) и продуктов реакции при горении (рис.1.)

Рис 1. Изменение энергии реагирующих веществ и продуктов реакции при горении

По оси абсцисс изображен путь реакции горения, по оси ординат – энергия.
– средняя начальная энергия реагирующих компонентов,
- средняя энергия продуктов горения.

В реакцию горения будут вступать только активные частицы горючего и окислителя, которые будут обладать энергией, необходимой для вступление во взаимодействие, т.е. способные преодолеть энергетический барьер
. Избыточная энергия активных частиц по сравнению сос средней энергией
, называется энергией активации. Поскольку реакции, протекающие при горении являются экзотермическими
. Разность энергий образовавшихся продуктов горения и исходных веществ (горючего и окислителя) определяет тепловой эффект реакции:

Доля активных молекул возрастает при увеличении температуры горючей смеси.

На рис.2. изображено распределение энергий между молекулами при температуре Если по оси энергий отметить значение, равное энергии активации, то получим долю активных молекул в смеси при заданной температуре. Если под действием источника тепла температура смеси возросла до значения, то возрастет и доля активных молекул, а следовательно, и скорость реакции горения.

Однако существуют химические реакции, которые не нуждаются для своего развития в заметном предварительном подогреве. Это цепные реакции.

Основа теории цепных реакций – предположение о том, что исходные вещества превращаются в конечный продукт не сразу, а с образованием активных промежуточных продуктов

Продукт первичной химической реакции обладает большим запасом энергии, которая может рассеиваться в окружающем пространстве при соударении молекул продуктов реакции или за счет излучения, а может передаваться молекулам реагирующих компонентов, переводя их в активное состояние. Эти активные молекулы (атомы, радикалы) реагирующих веществ порождают цепь реакций, где энергия передается от одной молекулы к другой. Поэтому такие реакции называются цепными.

Химически активные молекулы, атомы, радикалы, образующиеся на элементарных стадиях цепной реакции – звеньях цепи- называются активными центрами. Большую часть активных центров составляют атомы и радикалы, которые наиболее реакционно способны. Но вследствие этого они и неустойчивы, т.к. могут вступать в реакции рекомбинации с образованием малоактивных продуктов.

Длина цепи, образуемая одним начальным активным центром, может достигать несколько сотен тысяч звеньев. Кинетические закономерности цепных реакций существенно зависят от того, сколько активных центров образуется в одном звене цепи. Если при участии исходного активного центра в результате образуется только один активный центр, то такая цепная реакция называется неразветвленной, если же в одном звене цепи образуются два или более активных центров, то такая цепная реакция называется разветвленной. Скорость разветвленных цепных реакций возрастает лавинообразно, в чем и состоит причина самоускорения химических реакций окисления при горении, так как для большинства из них характерен механизм разветвленных цепных реакций.

Практически любая реакция горения может иметь одновременно признаки и теплового и цепного механизма протекания реакции. Зарождение первых активных центров может иметь тепловой характер, а реагирование активных частиц по цепному механизму приводит к выделению тепла, разогреву горючей смеси и тепловому зарождению новых активных центров.

Любая цепная реакция складывается из элементарных стадий зарождения, продолжения и обрыва цепи.

Зарождение цепи является эндотермической реакцией. Образование свободных радикалов (т.е. атомов или групп атомов, имеющих свободные валентности, например,
) из молекул исходных веществ возможно в результате мономолекулярного или бимолекулярного взаимодействия, а также в результате каких-либо посторонних воздействий на горючую смесь –инициирования.

Инициирование может осуществляться путем добавки специальных вещест – инициаторов , легко образующих свободные радикалы (например, пероксидов, химически активных газов
), под действием ионизирующих излучений, под действием света – фотохимическое инициирование. Например, взаимодействие водорода с хлором

при обычных условиях протекает крайне медленно, а при сильном освещении (солнечным светом, горящим магнием) протекает со взрывом.

К реакциям продолжения цепи относятся элементарные стадии цепной реакции, идущие с сохранением свободной валентности и приводящие к расходованию исходных веществ и образованию продуктов реакции.

зарождение цепи:

разветвление цепи:

обрыв цепи:

гомогенный

гетерогенный

При развитии цепи, когда концентрация активных центров станет достаточно большой возможно образование такого звена, в котором активный центр прореагирует без генерации нового активного центра. Такое явление называется обрывом цепи.

Обрыв цепи может быть гомогенным и гетерогенным.

Гомогенный обрыв цепей возможен либо при взаимодействии радикалов или атомов между собой с образованием устойчивых продуктов, либо при реакции активного центра с посторонней для основного процесса молекулой без генерации новых активных центров.

Гетерогенный обрыв цепи происходит на стенках сосуда, где протекает реакция горения или поверхности твердых микрочастиц, присутствующих в газовой фазе, иногда специально вводимых (например, как при тушении порошками). Механизм гетерогенного обрыва цепей связан с адсорбцией активных центров на поверхности твердых частиц или материалов. Скорость гетерогенного обрыва цепей сильно зависит от соотношения площади поверхности стенок к объему сосуда, где происходит горение. Таким образом, уменьшение диаметра сосуда заметно снижает скорость реакции горения, вплоть до его полного прекращения. На этом основано создание огнепреградителей.

Примером разветвленной цепной реакции может служить реакция горения водорода в кислороде.

зарождение цепи:

разветвление цепи:

обрыв цепи:

гомогенный

Содержание раздела

Горение – процесс быстрого высокотемпературного окисления, сочетающий физические и химические явления. Горение состоит из большого числа элементарных окислительно-восстановительных процессов, приводящих к перераспределению валентных электронов между атомами взаимодействующих веществ – цепная реакция. В процессе цепной реакции возникают свободные атомы, радикалы и другие неустойчивые промежуточные соединения, обладающие повышенной химической активностью – активные центры. Реагируя с исходным веществом, активные центры образуют конечные продукты реакции и новые активные промежуточные центры.

Начальный процесс образования активных центров из исходных веществ называется зарождением цепи. Этот процесс всегда идет с поглощением энергии, т.е. является эндотермическим.

Разветвление цепи происходит в результате реагирования активного центра с исходным веществом, в результате образуется несколько активных центров.

Под обрывом цепи понимают процесс, при котором активный продукт исчезает.

Если скорость разветвления больше скорости обрыва, то происходит развитие цепной реакции. Если скорость обрыва больше, чем скорость разветвления, то реакция не идет. Цепная реакция с неразветвленными цепями характеризуется образованием только одного нового активного центра – результат взаимодействия существовавшего активного центра с исходным веществом. Цепная реакция с разветвляющимися цепями характеризуется образованием нескольких активных центров (взамен израсходованного), что приводит к значительному ускорению реакции. К обрыву цепи может привести столкновение активных центров: между собой, с молекулами инертного вещества, со стенкой топки, со стенкой теплообменного устройства.

Наиболее простым является механизм реакции окисления (горения) водорода, а наиболее сложным – окисление углеводородов. Окисление водорода относится к цепной реакции с разветвляющимися цепями и состоит из следующих элементарных стадий:

1. H 2 + O 2 → H + H 2 O – зарождение цепи

2. H + O 2 → OH + O – разветвление цепи

3. O + H 2 → OH + H – продолжение цепи

4. OH + H 2 → H 2 O + H – продолжение цепи

5. H + стенка → (1/2) H 2 – обрыв цепи на стенке

6. H + O 2 + M → H 2 O + M – обрыв цепи в объеме

В результате взаимодействия атома водорода с молекулой кислорода получаются 2 молекулы воды и 3 новых атома водорода (активные центры), т.е. цепная реакция является разветвленной. Скорость цепных реакций очень чувствительна к посторонним примесям и к форме сосуда (топки).

О завершении процесса горения судят по анализам продуктов сгорания, выполняемых с использованием газохроматографического метода исследований (определение избытка воздуха, с которым работает горелка, может производиться двумя методами: по анализу газовоздушной смеси в смесителе горелки и по анализу продуктов сгорания).

На интенсивность горения топлива могут оказывать влияние следующие факторы:

Повышение температуры реагирующих веществ – топлива и окислителя. При повышении температуры на каждые 10° скорость реакции возрастает в 2–4 раза – правило Вант-Гоффа. (Воздействие температуры на реакции изучает особый раздел химии – «Термохимия»).

Фотохимическое действие света, заключающееся в том, что молекулы реагирующих веществ, поглощая кванты света, возбуждаются, т.е. становятся более реакционноспособными. (Воздействие света видимого, ультрафиолетового на реакции изучает – «Фотохимия»).

Ионизирующее излучение – (изучает – «Радиационная химия»).

Давление – (изучает – «Химия сжатия»).

Механическое воздействие. Механохимическим актом является разрыв химических связей в веществе под действием механических сил (дробление, перетирание и др.). Возникающие при этом «осколки» молекул повышают реакционноспособность веществ. (Химические процессы, происходящие под действием механических сил, изучает «Механохимия»).

Каталитическое воздействие. Катализаторы – это вещества, изменяющие скорость реакции. В присутствии катализатора изменяется путь, по которому происходит суммарная реакция. Так, реакция окисления CO кислородом 2CO + O 2 = 2CO 2 в значительной степени ускоряется в присутствии паров воды, это вызвано развитием цепей с участием свободных радикалов OH и H:

OH + CO → CO 2 + H – зарождение цепи

H + O 2 → OH + O – продолжение цепи

CO + O → CO 2 – продолжение цепи

В зависимости от агрегатного состояния катализатора и реагирующих веществ различают катализ гомогенный и гетерогенный.

Химические реакции, происходящие между веществами, находящимися в одной фазе, называют гомогенными, в разных фазах – гетерогенными.

Горение твердого топлива состоит из подогрева, испарения влаги, возгонки летучих, образования кокса, окисления летучих, окисления кокса – гетерогенный процесс.

Горение жидкого топлива состоит из нагрева, кипения, испарения, окисления – гетерогенный процесс.

Горение газообразного топлива состоит из двух стадий: подогрева и окисления – гомогенный процесс.

Горение газа

Процесс горения газообразного топлива сопровождается быстрым окислением простых горючих газов и пирогенетическим разложением сложных газов. Пирогенетическое разложение протекает с выделением сажистого углерода и с образованием быстро окисляющихся низкомолекулярных соединений. Сажистый углерод в факеле придает пламени окраску и делает его светящимся. При предварительном смешении воздуха с простыми газами (CO, H 2) пирогенетическое разложение отсутствует и смесь горит прозрачным пламенем. Присутствие в смеси инертных газов N 2 и CO 2 повышает температуру воспламенения, а кислород – понижает; с повышением давления температура воспламенения понижается.

Температуру воспламенения смесей горючих газов ориентировочно можно рассчитать по формуле:

t воспл.см ≈ 0,01 (at a + bt b + ct c + …)

где: a, b, c – содержание горючих газов, %;

t a , t b , t c – температуры воспламенения газов, °С.

Скорость воспламенения зависит также от состава газов и обычно не превышает 10 м/сек.

При горении газообразного топлива в некоторых условиях возможен взрыв, особенно при быстром воспламенении горючей смеси определенного состава в небольшом объеме. Тепло, выделяющееся при этом, почти полностью расходуется на нагрев продуктов горения, быстрое расширение которых вызывает сжатие окружающего слоя. При большой скорости воспламенения сжатие не успевает распространяться по всему объему пространства и локализуется. Это вновь вызывает сжатие и расширение, т.е. образуется взрывная волна, распространяющаяся со скоростью 2000–3000 м/сек.

Взрывная волна образуется не только от нагревания, но и в результате электрохимических процессов. Предупредить образование взрывоопасной смеси можно надежной герметизацией газопроводных устройств, положительным давлением газа в газопроводе и полным исключением возможности воспламенения смеси.

Таблица 7.1. Скорость распространения пламени в смесях горючих газов с воздухом
Газ Стехиометрическая смесь Смесь, в которой скорость имеет

максималь­ное значение

Содержание, об. % И н, см/с Содержание, об. % И н max ,
газа воздуха газа воздуха
Водород 29,5 70,5 160–180 42–43 57–58 265–267
Окись углерода 29,5 70,5 28–30 43–52,5 47,5–57 41–46
Метан 9,5 90,5 28–37 9,5–10,5 89,5–90,5 37–38
Пропан 4,03 95,97 40,6–40,8 4,26 95,74 42,9–43,2
Бутан 3,14 96,86 34 3,3 96,7 37
Ацетилен 7,75 92,25 100–128 10–10,7 89,3–90 131–157
Этилен 6,54 93,46 60–63 7,0–7,4 92,6–93 63–81

Горение мазута

Процесс горения мазута более сложен по сравнению с процессом горения газообразного топлива. Сжигание мазута с помощью горелок условно можно разделить на несколько взаимосвязанных друг с другом стадий:

Распыление мазутной струи;

Смешение мелких капель мазута с воздухом;

Нагрев аэросмеси до температур испарения мелких капель; пирогенетическое разложение молекул углеводородов и воспламенение образовавшихся газов;

Смешение газов, парообразных и твердых продуктов разложения (сажистого углерода) с воздухом в горящем факеле и их окисление (горение).

Чем тоньше распыление мазута, тем лучше протекают процессы смешения мелких капель с воздухом, подогрев и воспламенение подготовленной для горения смеси топлива с воздухом.

При факельном сжигании мазута скорость выгорания частиц топлива, движущихся в потоке аэросмеси, зависит от трех факторов:

Тонкости распыления мазута;

Условий смешения распыленного мазута с воздухом;

Условий подвода тепла к начальной части факела, необходимого для стабилизации воспламенения горючей смеси, выходящей из форсунки.

При подогреве мазутных капель, находящихся в потоке аэросмеси, протекают процессы, связанные с испарением жидкости и расщеплением углеводородов. Испарение начинается при 150 °С с выделением легких фракций. При температурах выше 350 °С и недостатке воздуха начинается расщепление частиц с образованием легких и тяжелых углеводородов. При температурах выше 650 °С, молекулы углеводородов распадаются с образованием высокомолекулярных углеводородов и твердого остатка в виде сажистого углерода.

Высокомолекулярные углеводороды и сажистый углерод, дающий коптящее пламя, сгорают с трудом. Для сжигания одной молекулы продукта распада углеводородов в виде (C 18 H 2) 2 требуется 37 молекул кислорода. Следовательно, если при движении потока горючей смеси капли мазута сразу попадут в зону высоких температур факела, то они будут быстро нагреваться и при расщеплении выделять трудносгораемые продукты, которые, не догорая, будут удаляться вместе с дымовыми газами.

Особенно неблагоприятно для полного горения неравномерное распределение кислорода в аэросмеси, которое наблюдается при подаче струи мазута по оси факела, при больших потерях скоростного напора воздуха в выходном отверстии мазутной горелки и плохом смешении аэросмеси топлива в процессе горения за горелкой.

Для улучшения процессов горения мазута большое значение имеют подготовительные стадии, проводимые перед сжиганием, например: подогрев мазута при подаче в горелки, предварительное его смешение с воздухом или паром для получения мазутной эмульсии до подачи в горелки, предварительная газификация мазута за счет неполного сжигания в горелочной камере с последующим дожиганием полученного газа в топочном пространстве.

Предварительная газификация мазута за счет неполного сжигания, а также предварительная подготовка мазутной эмульсии в смеси с водой, паром или сжатым воздухом до подачи в горелочное устройство существенно изменяют процесс горения жидкого топлива в факеле, приближая его к процессу горения газообразного топлива.

Горение твердого топлива

Гетерогенный процесс горения (окисления) твердого топлива наиболее сложен (о последовательности отдельных стадий горения твердого топлива было упомянуто выше). Скорость гетерогенной реакции в данном случае измеряется количеством углерода, сгоревшего в единицу времени на единице активной поверхности топлива (площади). Скорость этой реакции зависит от температуры, давления, концентрации реагирующих веществ и от продолжительности диффузии окислителя к активной поверхности.

Продолжительность диффузии в свою очередь зависит: от температуры, от разности концентраций окислителя в потоке и на поверхности частицы, от толщины пограничного слоя.

Пограничный слой образуется вблизи поверхности частиц топлива из-за уменьшения реагирующих веществ, вследствие увеличения концентрации продуктов горения (СО и СО 2). Этот пограничный слой газа толщиной «б» препятствует подводу кислорода к поверхности частицы. Толщина пограничного слоя зависит от скорости потока и от приведенного диаметра частицы топлива.

В результате скорость горения твердого топлива определяется тем, какой из составляющих процессов – диффузия или собственно окисление – является лимитирующим.

Сжигание твердого топлива в слое на колосниковой решетке имеет много недостатков, главные из них состоят в том, что трудно получить высокие температуры горения топлива и автоматизировать процессы горения и тепловой режим котла.

Твердое топливо в большинстве случаев перерабатывают на пылевидное или газообразное путем газификации. Пылевидное топливо сжигается факельным способом. При факельном способе сжигания требуется меньше избыточного количества воздуха для полноты горения по сравнению со слоевым способом.

При сжигании угольной пыли коэффициент избытка воздуха принимается не более 1,20–1,25. При этом значительное количество воздуха, необходимого для горения, можно подавать подогретым до высокой температуры. Процессы горения угольной пыли легче автоматизировать.

Реакции горения углерода, серы, углеводородов

Горение углерода

С+О 2 = СО 2

1моль (молекула)+1 моль= 1 моль

1объемная часть+1 объемная часть= 1 объемная часть (полное сгорание)

12 массовых частей+32 массовые части= 44 массовые части

Горение окиси углерода

2СО+О 2 = 2СО 2

2 моля +1 моль= 2 моля

2 объемные части+1 объемная часть= 2 объемные части (полное сгорание) 56 массовых частей+32 массовые части= 88 массовых частей

Горение серы

S +О 2 = SО 2

1 моль+1 моль= 1 моль

1 объемная часть+1 объемная часть= 1 объемная часть

32 массовые части+32 массовые части= 64 массовые части

Горение водорода

2H 2 +О 2 = 2 H 2 O

2 моля+1 моль= 2 моля

2 объемные части +1 объемная часть= 2 объемные части

4 массовые части+32 массовые части= 36 массовых частей

Горение углеводородов

C m H n +(m + n/4 )O 2 = m CO 2 + n/2 H 2 O

1 моль +(m + n/4 ) молей= m молей + n /2 молей

1 объемная часть +(m + n/4 ) объемных частей= m объемных частей + n /2 объемных частей

12 m + n массовых частей + 32 (m + n/4 ) массовых частей= 44 m массовых частей + 9 n массовых частей

Таблица 7.2. Атомные массы химических элементов Таблица 7.3. Скорость горения со свободной поверхности

Тема : Типы химических реакций. Реакции горения.

Цели: Способствовать развитию у школьников интереса к химии и ОБЖ, раскрыть межпредметные связи, повторить типы химических реакций, совершенствовать учебные умения школьников при составлении химических уравнений, приобрести навыки работы с огнетушителем, познакомиться с мерами профилактики пожаров, способствовать развитию умений сравнивать и обобщать, быстро и четко формулировать и высказывать свои мысли, применять свои знания на практике.

Оборудование и реактивы : презентация к уроку, фарфоровая чашка, спирт, картонка, спички, воздушно-пенный и углекислотный огнетушители.

Ход урока:

Учитель химии: Горение это первая химическая реакция, с которой познакомился человек. Огонь…Можно ли представить наше существование без огня? Он вошел в нашу жизнь, стал неотделим от нее. Но далеко не всегда , вглядываясь в танцующий язычок пламени, мы задумываемся над тем, какую великую роль сыграл огонь в судьбе человеческой. Без огня человек не сварит ни пищу, ни сталь, без него невозможно движение транспорта. Без огня человек, наверное, не смог бы стать человеком… «Только научившись добывать огонь с помощью трения, люди впервые заставили служить себе некоторую неорганическую силу природы», - писал Ф.Энгельс.

Сущность процесса горения долгое время оставалась загадкой природы. Только лишь два века назад наконец удалось проникнуть в тайны горения. И сделала это всемогущая химия. До этого ошибочно думали, что всякое горючее вещество содержит в себе особую «огненную мате­рию», некую мифическую субстанцию – флогистрон, которая при горении выделяется из вещества и поглощается воздухом. Таким образом, горение считали реакцией разложения.

На самом же деле огонь – это признак такого процесса, в ходе которого горящие вещества взаимодействуют с кислородом с выделением большого количества теплоты и света. Этот химиче­ский процесс и называют горением.

Задание: Напишите уравнения взаимодействия и кислородом: лития, серы, углерода, фос­фора.

Один ученик выполняет задания на доске. Остальные – в тетрадях.

Учитель:

Ученик: Это реакции соединения. По тепловому эффекту экзотермические, идут с выделением теплоты. Продукты реакций горения – оксиды. Оксиды – это бинарные соединения, в состав которых входит кислород со степенью окисления -2.

Учитель: Какие условия должны соблюдаться для протекания реакции горения?

Ученик: Чтобы вещество загорелось должны быть соблюдены два условия: 1) достижение темпера­туры воспламенения вещества и 2) доступ кислорода.

Учитель проводит опыт:

Опыт1. Горение спирта. В фарфоровую чашку налить немного спирта, поджечь его, а затем плотно прикрыть чашку листом картона.

Учитель: : Почему пламя гаснет, а бумага не загорается?

Ученик: Пламя гаснет, так как нет доступа кисло­рода, бумага не загорается т.к. не была достигнута температура воспламенения.

Учитель: Каковы условия прекращения процесса горения?

К какому типу относятся эти реакции. Какие это реакции по тепловому эффекту? К какому классу веществ относятся продукты этих реакций? Какие вещества называются оксидами?

Ученик: Для прекращения процесса горе­ния следует либо охладить вещество ниже температуры воспламенения, либо прекратить к нему доступ кислорода.

Задание: Допишите уравнения химических реакций: презентация слайд №

+ О2 → CuO

Mg + … → MgO

… + O2 → CO2

CuS + … → SO2 + …

Один учащийся записывает на доске, остальные в тетрадях, затем проводят самопроверку.

Учитель ОБЖ: Знание условий горения веществ необходимо человеку для тушения пожара. Причиной по­жара являются многие факторы, и прежде всего – это химическая неграмотности многих людей, недопустимая небрежность в выполнении учебных, бытовых и производственных операций, на­рушение условий обращения с веществами и источниками энергии. Что же такое пожар?

Пожар – это неконтролируемый, быстропротекающий при высокой температуре химиче­ский процесс, сопровождающийся выделением большого количества теплоты, уничтожающий ма­териальные ценности и создающий опасность для жизни людей. Как правило, пожар возникает из-за несоблюдения мер предосторожности при работе с огнем и нарушения правил противопожар­ной безопасности.

При тушении пожара водой создаются два условия: вода охлаждает горячие предметы, а ее пары затрудняют к ним доступ кислорода. Кроме того, для прекращения доступа воздуха часто используют песок, оксид углерода (IV ), который получают в огнетушителях, взрывчатые вещества (при взрыве образуется относительный вакуум и прекращается горение). Этот прием используется при тушении пожаров в случаях горения нефти и ее продуктов.

Пожар можно погасить:

    Охлаждением горящего предмета;

    Прекращением доступа воздуха к очагу горения;

    Удалением горючих веществ и предметов с возможных путей распространения огня

Ученик: Для тушения пожара применяют воду, пену, углекислый газ, снег, землю, песок и другие сыпучие негорючие материалы. Вода является эффективным огнегасительным средством, доступным, дешевым и безвредным. Она оказывает сильное охлаждающее действие, резко пони­жая температуру горящего тела. Однако, вода неэффективна при тушении горючих органических жидкостей, таких как, бензин, керосин, бензол, нефть, которые легче воды и не смешиваются с ней. Нельзя использовать воду для гашения загоревшегося газа. Непригодна вода и для тушения пожара при наличии электроустановок, находящихся под напряжением. Использовать воду для тушения пожаров в этом случае опасно для жизни, так как вода электропроводна. Горящие жидко­сти можно засыпать песком. Он устраняет доступ кислорода и ликвидирует пламя. Более эффек­тивным средством пожаротушения является сода (карбонат и бикарбонат натрия). Она разлагается при повышенной температуре, при этом поглощается тепло и выделяется углекислый газ, обвола­кивающий горящий предмет.

Загорание жидкого топлива, смазочных масел, а также газов на воздухе из трубопроводов и баллонов можно остановить, набросив накидку из огнезащитной ткани или тяжелое покрывало.

Задание: Какие средства тушения пожара нужно использовать в следующих случаях: а) заго­релась одежда на человеке; б) воспламенился бензин; в) возник пожар на складе лесоматериа­лов; г) загорелась нефть на поверхности воды?

Учитель химии: Особое внимание необходимо обратить на приемы тушения пожара, который мо­жет возникнуть в кабинете химии. Горючие спирт и ацетон разрешается тушить водой, так как они в ней хорошо растворяются.

Спиртовку после употребления убирают лишь после того, как погасят пламя и она остынет.

При воспламенении одежды следует как можно быстрее снять ее, плотно свернуть, пога­сить пламя песком или водой. Помните, что при загорании одежды нельзя бежать или совершать резкие движения. При беге и резких движениях доступ воздуха увеличивается, а это приводит к усилению процесса горения. Если снять воспламенившуюся одежде невозможно, необходимо плотно завернуть человека в накидку, облить водой или воспользоваться огнетушителем.

Огнетушители могут быть воздушно-пенные и углекислотные.

Учитель ОБЖ: Рассмотрим устройство и принцип работы содового огнетушителя

Для тушения пожаров применяют специальный аппарат – огнетушитель. Содовый огнетуши­тель состоит из резервуара, заполненного раствором соды, капсулы, в которую налита соляная кислота, и раструба, с помощью которого сильную струю углекислого газа направляют в очаг пожара. Чтобы привести огнетушитель в действие, необходимо разбить капсулу, слегка встряхнуть содержимое резервуара и направить струю углекислого газа в зону горения.

Учитель ОБЖ : Как привести в действие огнетушитель?

Ученик: Необходимо пусковую рукоятку поднять вверх и отвести ее вперед, повернув на 180 0 от началь­ного положения, а затем повернуть огнетушитель.

В приведенных в действие огнетушителях происходит химическая реакция, в результате чего из отверстия выбрасывается струя пены длиной 6-8 м. Эту струю надо направить на очаг по­жара. Продолжительность действие огнетушителей около 1 мин. При этом выбрасывается почти 40 л пены.

Демонстрация огнетушителей и освоение работы с ними

Рефлексия:

Ответьте на вопросы:

    Какими явлениями сопровождается горение? (Горение сопровождается и физи­ческими и химическими явлениями: выделение и передача теплоты, химическая реак­ция окисления, выделение продуктов сгорания и распределение их в окружающей среде).

    Как изменяется агрегатное состояние веществ в ходе горения? (Твердые вещества в ходе горе­ния превращаются в жидкие и газообразные).

    Что называют дымом? (Дым – это смесь газообразных и твердых продуктов сгорания)

    Какие компоненты дыма обладают токсичностью, т.е. вредными для организма человека свой­ствами? (Оксид углерода (II ), оксид фосфора (V ), формальдегид, оксиды азота, серо­водород, хлороводород, фосген, пары синильной кислоты)

    Почему для человека опасна большая плотность дыма? (Большая концентрация продуктов го­рения в составе дыма понижает процентное содержание кислорода. При содержании кислорода в воздухе 14-16% наступает кислородное голодание, 9%-ное содержание кисло­рода опасно для жизни).

    Почему вода гасит пламя? (Вода, обладая высокой теплоемкостью, может интенсивно по­глощать теплоту, выделяющуюся при горении. Способность воды гасить пламя усилива­ется еще тем, что, превращаясь при нагревании в пар, вода разбавляет реагирующие при горении вещества).

    Какие вы знаете вещества или материалы, создающие условия для прекращения горения? (Водные растворы солей, пена, песок, флюсы, тальк, мел, водяной пар, углекислый газ, азот и др.)

Домашнее задание: Вычислите массу железа и объем кислорода (н.у.), который необходимо взять, чтобы получить 0,3 моль оксида железа (III ).

Подведение итогов урока, учитель благодарит детей за активное участие, выставляет и комментирует оценки учащихся.

Тема 3. ХИМИЧЕСКИЕ ОСНОВЫ ГОРЕНИЯ.

3.1. Химизм реакций горения.

Как Вы уже уяснили, горением называется быстропротекающая хими-ческая реакция, сопровождающаяся выделением тепла и свечением (пламе-нем). Обычно – это экзотермическая окислительная реакция соединения го-рючего вещества с окислителем – кислородом воздуха.

Горючими веществами могут быть и газы, и жидкости, и твердые те-ла. Это Н 2 , СО, сера, фосфор, металлы, С m H n (углеводороды в виде газов, жидкостей и твердых веществ, т.е. органические вещества. Природными уг-леводородами, например, являются природный газ, нефть, уголь). В принци-пе, горючими могут все вещества, способные к окислению.

Окислителями служат: кислород, озон, галогены (F, Cl, Br, J), закись азота (NO 2), аммиачная селитра (NH 4 NO 3) и др. У металлов окислителями могут быть также СО 2 , Н 2 О, N 2 .

В некоторых случаях горение возникает при реакциях разложения ве-ществ, полученных в эндотермических процессах. Например, при распаде ацетилена:

С 2 Н 2 = 2С + Н 2 .

Экзотермические реакции – это реакции, проходящие с выделением тепла.

Эндотермические реакции – это реакции, проходящие с поглощением тепла.

Например:

2Н 2 +О 2 = 2Н 2 О+Q – экзотермическая реакция,

2Н 2 О+Q=2Н 2 +О 2 – эндотермическая реакция,

где: Q – тепловая энергия.

Таким образом, эндотермические реакции могут протекать только с внесением внешней тепловой энергии, т.е. при нагреве.

В химических реакциях по закону сохранения масс вес веществ до ре-акции равен весу веществ, образованных после реакции. При уравнивании химических уравнений получаются стехиометрические составы.

Например, в реакции

СН 4 + 2О 2 = СО 2 + 2Н 2 О

имеем 1 моль СН 4 + 2 моля О 2 = 1 моль СО 2 + 2 моля Н 2 О.

Количество молей перед формулами веществ называется стехиометри-ческими коэффициентами.

Учитывая понятия «молярный объем», «молярная концентрация», «парциальное давление», получаем, что для полного реагирования метана надо смешать 1 моль СН 4 с 2 молями О 2 , или 1/3= 33,3% СН 4 и 2/3=66,7% О 2 . Такой состав и называется стехиометрическим.

Если рассмотреть горение СН 4 в воздухе, т.е. в смеси 21% О 2 +79% N 2 или О 2 +79/21N 2 или О 2 +3,76N 2 , то реакция запишется так:

СН 4 +2О 2 +2×3,76N 2 =СО 2 +2Н 2 О+2×3,76N 2 .

1 моль СН 4 +2 моля О 2 +7,52 моля N 2 = 10,52 моля смеси О 2 , N 2 и СН 4 .

Тогда стехиометрический состав смеси будет:

(1/10,52)*100%=9,5% СН 4 ; (2/10,52)*100%=19,0% О 2 ;

(7,52/10,52)*100%=71,5% N 2 .

Значит в наиболее горючей смеси вместо 100% (СН 4 +О 2) в реакции с кислородом будет 24% (СН 4 +О 2) в реакции с воздухом, т.е. тепла выделится значительно меньше.

Та же картина получится, если смешивать произвольные, нестехиомет-рические составы.

Например, в реакции 2СН 4 +2О 2 =СО 2 +2Н 2 О+СН 4 1 моль СН 4 не про-реагирует.

В реакции СН 4 +4О 2 =СО 2 +2Н 2 О+2О 2 2 моля О 2 не участвует в реак-ции, а играют роль балласта, требующие на свой нагрев какое-то количество тепла.

Таким образом, если сравнить реакции горения метана в кислороде и воздухе или в избытке СН 4 и О 2 , то ясно, что количество выделяемого тепла в первой реакции будет больше, чем в остальных, так как в них:

Меньше концентраций реагирующих веществ в общей смеси;

Часть тепла уйдет на нагрев балласта: азота, кислорода или метана.

Зададимся вопросами:

Какая же энергия может выделиться при реакции?

Отчего зависит количество теплоты, т.е. тепловой эффект ре-

Сколько нужно добавить тепловой энергии, чтобы протекла

эндотермическая реакция?

Для этого введено понятие теплосодержание вещества.

3.2.Теплосодержание веществ.

Откуда же взялась теплота в реакции горения метана? Значит она была скрыта в молекулах СН 4 и О 2 , а теперь высвободилась.

Приведем пример более простой реакции:

2Н 2 +О 2 =2Н 2 О+Q

Значит энергетический уровень стехиометрической смеси водорода с кислородом был выше, чем у продукта реакции Н 2 О и «лишняя» энергия вы-свободилась из вещества.

При обратной реакции электролиза воды, т.е. разложения воды с помо-щью электрической энергии, происходит перераспределение атомов в моле-куле воды с образованием водорода и кислорода. При этом теплосодержание Н 2 и О 2 повышается.

Таким образом, каждое вещество при его образовании получает или от-даст определенную энергию, и мера тепловой энергии, накапливаемой веще-ством при его образовании, называется теплосодержанием, или энтальпией .

В отличие от химии, в химической термодинамике теплота образования вещества обозначается не символом Q, а символом DН со знаком (+), если теплота поглощается химическим соединением, и со знаком (-), если теплота выделяется при реакции, то есть «уходит» из системы.

Стандартная теплота образования 1 моля вещества при давлении 101,3 кПа и температуре 298 К обозначается .

В справочниках даны теплоты образования соединений из про-стых веществ.

Например:

У СО 2 = - 393,5 кДж/моль

У Н 2 О газ = - 241,8 кДж/моль

Но у веществ, образующихся при эндотермических процессах, напри-мер, ацетилена С 2 Н 2 = +226,8 кДж/моль, при образовании атома водо-рода Н + по реакции Н 2 = Н + + Н + =+217,9 кДж/моль.

Для чистых веществ, состоящих из одного химического элемента в ус-тойчивой форме (Н 2 , О 2 , С, Na и др.) DН условно принята равной нулю.

Однако, если мы обсуждаем макроскопические свойства веществ, то выделяем несколько форм энергии: кинетическую, потенциальную, химиче-скую, электрическую, тепловую, ядерную энергии и механическую работу. А если рассматривать вопрос на молекулярном уровне, то эти формы энергии можно объяснить исходя лишь из двух форм – кинетической энергии движе-ния и потенциальной энергией покоя атомов и молекул.

При химических реакциях изменяются только молекулы. Атомы оста-ются неизменными. Энергия молекулы – это энергия связи ее атомов, нако-пленная в молекуле. Она определяется силами притяжения атомов друг к другу. Кроме того, существует потенциальная энергия притяжения молекул друг к другу. В газах она мала, в жидкостях больше и еще больше в твердых телах.

Каждый атом обладает энергией, часть которой связана с электронами, а часть – с ядром. Электроны обладают кинетической энергией вращения во-круг ядра и потенциальной электрической энергией притяжения друг к другу и отталкивания друг от друга.

Сумма этих форм молекулярной энергии и составляет теплосодержание молекулы.

Если просуммировать теплосодержание 6,02×10 23 молекул вещества, то получим молярное теплосодержание этого вещества.

Почему теплосодержание одноэлементных веществ (молекул одного элемента) взято за ноль, можно пояснить следующим образом.

DН химического элемента, то есть энергия его образования, связана с внутриядерными процессами. Ядерная энергия связана с силами взаимодей-ствия внутриядерных частиц и превращением одного химического элемента в другой при ядерных реакциях. Например, реакция распада урана:

или проще: U+n®Ba+Kr+3n.

где: n o – нейтронная частица с массой 1 и нулевым зарядом.

Уран захватывает нейтрон, в результате чего расщепляется (распадает-ся) на два новых элемента – барий и криптон – с образованием 3 х нейтронов, и выделяется ядерная энергия.

Следует сказать, что с ядерными реакциями связаны в миллионы раз большие изменения энергии, чем при химических реакциях. Так, энергия распада урана составляет 4,5×10 9 ккал/моль×урана. Это в 10 млн. раз больше, чем при сгорании одного моля угля.

В химических реакциях атомы не изменяются, а изменяются молекулы. Поэтому энергия образования атомов химиками не учитывается, и DН одно-элементных газовых молекул и атомов чистых веществ принята равной нулю.

Приведенная реакция распада урана – это классический пример цепной реакции. Теорию цепного механизма реакции горения мы будем рассматри-вать позднее. А вот откуда берется нейтрон и что заставляет его реагировать с ураном – это связано с так называемой энергией активации, которую рас-смотрим чуть позднее.

3.3. Тепловой эффект реакции.

То, что в каждом индивидуальном веществе заключено определенное количество энергии, служит объяснением тепловых эффектов химических реакций.

По закону Гесса: Тепловой эффект химической реакции зависит только от природы начальных и конечных продуктов и не зависит от числа проме-жуточных реакций перехода от одного состояния к другому.

Следствие 1 этого закона: Тепловой эффект химической реакции равен разности между суммой теплот образования конечных продуктов и суммой теплот образования исходных веществ с учетом коэффициентов при форму-лах этих веществ в уравнении реакции.

Например, в реакции 2Н 2 +О 2 =2Н 2 О±DН.

; ; .

В итоге общее уравнение реакции будет выглядеть так:

2Н 2 +О 2 =2Н 2 О – 582 кДж/моль.

И если DН со знаком (-), то реакция экзотермическая.

Следствие 2 . По закону Лавуазье-Лапласа тепловой эффект разложе-ния химического соединения равен и противоположен по знаку тепловому эффекту его образования.

Тогда реакция разложения воды будет:

2Н 2 О=2Н 2 +О 2 +582 кДж/моль, т.е. эта реакция эндотермическая.

Пример более сложной реакции:

СН 4 +2О 2 =СО 2 +2Н 2 О.

Тогда реакция запишется так:

СН 4 + 2О 2 = СО 2 + 2Н 2 О – 742,3 кДж/моль, значит реакция экзотермиче-ская.

3.4. Кинетические основы газовых реакций.

По закону действующих масс скорость реакции при постоянной темпе-ратуре пропорциональна концентрации реагирующих веществ или, как гово-рят, «действующих масс».

Скоростью химической реакции (υ ) принято считать количество веще-ства, реагирующего в единицу времени (d t ) в единице объема (dV ).

Рассмотрим реакцию, протекающую по уравнению:

А + В = С + Д.

Поскольку скорость реакции характеризует уменьшение во времени концентрации реагирующих веществ и увеличение концентрации продуктов реакции, то можно записать:

, (3.1)

где минусы при производных говорят о направлении изменения концентра-ции компонентов, а в квадратных скобках указаны концентрации компонен-тов.

Тогда прямая необратимая реакция при Т = const протекает со скоро-стью:

, (3.2)

где: k – константа скорости химической реакции. Она не зависит от концентрации компонентов, а изменяется только с температурой.

По закону действующих масс концентрации компонентов реакции вхо-дят в кинетическое уравнение в степени, равной стехиометрическому коэф-фициенту этого компонента.

Так, для реакции

аА + bB = cC + dД

Кинетическое уравнение имеет вид:

Показатели степеней a, b, c, d принято называть порядками реакции по компонентам А, В, С, Д, а сумму показателей – общим порядком реакции.

Например, реакции типа

А ® bB + cC – I порядка,

2А = bB + cC – II порядка,

А + B = cC + dД – III порядка.

Поскольку концентрации всех реагирующих компонентов связаны ме-жду собой стехиометрическими уравнениями, то простейшие кинетические уравнения I порядка являются дифференциальными уравнениями I порядка с одной независимой переменной – концентрацией – и могут быть проинтегри-рованы.

Простейшим кинетическим уравнением является уравнение I порядка типа

для которого . (3.4)

Обозначим через концентрацию компонента А до начала реакции и, проинтегрировав уравнение при граничном условии t=0, [А]=[А 0 ], получа-ем:

Или [A]=×e - kt . (3.5)

Таким образом, зависимость скорости реакции от концентрации ве-ществ имеет экспоненциальный характер.

Кинетическая энергия газов объясняет это так. По гипотезе Аррениуса реакция между молекулами проходит лишь в том случае, если они являются активными, т.е. обладают избыточной энергией, достаточной для разрыва межатомных связей, так называемой энергией активации Е А.

Т.е. скорость химической реакции зависит не от количества столкнове-ний всех молекул, а только активированных.

По закону Больцмана, число активных молекул

n A = n о * e - E / RT , (3.6)

где: Е – энергия активации,

Т – температура газовой смеси,

n о – общее число молекул.

Тогда и число эффективных соударений, совпадающее со скоростью реакции, равно:

υ р = Z эфф = Z 0 * e - E / RT , (3.7)

где: Z 0 – общее число соударений молекул.

1) скорость реакции пропорциональна концентрации активных моле-кул, число которых зависит от температуры и давления в смеси, так как дав-ление и есть количество молекул, сталкивающихся с какой-либо поверхно-стью;

2) реакция возможна лишь в том случае, если взаимодействующие мо-лекулы получают определенный запас энергии, достаточный для разрыва или ослабления межатомных связей. Активация заключается в переходе молекул в такое состояние, в котором возможно химическое превращение.

Чаще всего процесс активации идет путем образования промежуточных неустойчивых, но высокоактивных соединений атомов.

Таким образом, не только для протекания эндотермических процессов нужен внешний подвод энергии, но и для экзотермических. Чтобы произош-ла экзотермическая реакция, надо сообщить ей какой-то импульс тепловой энергии. Например, для протекания реакции горения в смеси водорода с ки-слородом, надо ее поджечь.

Минимальное количество тепловой энергии, необходимое для «запус-ка» химической реакции, называется энергией активации.

3.5. Энергия активации реакции.

Для объяснения данного явления часто пользуются следующим приме-ром (рис. 9):

На площадке лежит шар. Площадка расположена перед горкой. Поэто-му шар мог бы скатиться сам вниз, если бы не горка. Но для самопроизволь-ного спуска его надо поднять на вершину горки. При этом освободится не только энергия подъема на горку, но и энергия спуска вниз.

Рис. 9. Схема активирования реакции.

Рассмотрим две реакции:

1) Н 2 +О 2 =Н 2 О-

2) Н 2 О=Н 2 +О 2 +

Как видно из рисунка, Е 2 =+Е 1 ;

В общем, при любой реакции

.

И от разности Е 1 и Е 2 , которые всегда положительные, зависит знак те-плового эффекта.

Таким образом, энергия активации – это энергия, необходимая для пре-вращения реагирующих веществ в состояние активного комплекса (разрыв межатомных связей, сближение молекул, накопление энергии в молекуле…).

С повышением температуры газов резко увеличивается доля активных молекул (е -Е/ RT), а значит скорость реакции по экспоненциальной зависимо-сти. Эту зависимость можно проиллюстрировать следующим образом:

Рис. 10. Зависимость скорости реак-ции от температуры: 1 – скорость 1-ой реакции, 2 – скорость 2-ой реак-ции.

Как видно из рисунка 10, скорость первой реакции меньше скорости второй реакции, а энергия активации 1-ой реакции больше, чем Е второй. И при одинаковой температуре Т 2 υ 2 > υ 1 . Чем больше энергия активации, тем выше температура, необходимая для достижения данной скорости реакции.

Причина этого в том, что когда Е больше, то существующие межатом-ные связи в молекулах реагирующих компонентов сильнее, и нужно больше энергии на преодоление этих сил. При этом доля активных молекул соответ-ственно меньше.

Из сказанного видно, что величина энергии активации является важ-нейшей характеристикой химического процесса. Она определяет высоту энергетического барьера, преодоление которого представляет собой условие протекание реакции. С другой стороны, она характеризует скорость реакции от температуры, т.е. чем выше энергия активации, тем выше температура для достижения заданной реакции.

3.6. Катализ.

Кроме повышения температуры и концентрации веществ, для ускоре-ния химической реакции используют катализаторы , т.е. вещества, которые вводятся в реагирующую смесь, но не расходуются при реакции, а ускоряют ее путем снижения энергии активации.

Процесс увеличения скорости реакции с помощью катализаторов назы-вается катализом .

Катализаторы участвуют в промежуточных реакциях по созданию ак-тивированного комплекса за счет ослабления связей в молекулах исходных веществ, их разложения, адсорбции молекул на поверхности катализатора, либо ввода активных частиц катализатора.

Характер участия катализатора можно пояснить следующей схемой:

Реакция без катализатора: А + В = АВ.

С катализатором Х: А + Х = АХ ® АХ + В = АВ + Х.

Приведем картинку, подобно представленной на рис. 9.

Рис. 11. Схема действия ката-лизатора: Е б.кат и Е с кат – энер-гии активации реакции без ка-тализатора и с катализатором соответственно.

При вводе катализатора (рис. 11) реакция может протекать по иному пути с меньшим энергетическим барьером. Этот путь соответствует новому механизму реакции через образование другого активированного комплекса. И новый более низкий энергетический барьер может преодолеть большее число частиц, что и приводит к увеличению скорости реакции.

Следует отметить, что энергия активации обратной реакции понижает-ся на такую же величину, как и энергия активации прямой реакции, т.е. обе реакции ускоряются одинаково, и катализаторы не инициируют реакцию, они только ускорят реакцию, которая может происходить в их отсутствии, но значительно медленнее.

Катализаторами могут стать промежуточные продукты реакции, тогда эта реакция называется автокаталитической. Так, если скорость обычных ре-акций снижается по мере расходования реагирующих веществ, то реакция горения из-за автокатализа самоускоряется и является автокаталитической.

Наиболее часто в качестве катализаторов используются твердые веще-ства, которые адсорбируют молекулы реагирующих веществ. При адсорбции ослабляются связи в реагирующих молекулах, и таким образом облегчается реакция между ними.

Что же такое адсорбция?

3.7. Адсорбция.

Адсорбция – поверхностное поглощение какого-либо вещества из га-зообразной среды или раствора поверхностным слоем другого вещества – жидкости или твердого тела.

Например, адсорбция токсичных газов на поверхности активированно-го угля, используемого в противогазах.

Различают физическую и химическую адсорбцию.

При физической адсорбции захваченные частицы сохраняют свои свойства, а при химической – образуются химические соединения адсорбата с адсорбентом.

Процесс адсорбции сопровождается выделением теплоты. У физической адсорбции она незначительна (1-5 ккал/моль), у химической – значительно больше (10-100 ккал/моль). Тем самым могут ускоряться химические реакции при катализе.

Для процессов горения и взрыва можно привести следующие примеры:

1. Температура самовоспламенения смеси Н 2 +О 2 равна 500 0 С. В при-сутствии палладиевого катализатора она снижается до 100 0 С.

2. Процессы самовозгорания угля начинаются с химической адсорбции кислорода на поверхности угольных частиц.

3. При работах с чистым кислородом на одежде хорошо адсорбируется кислород (физическая адсорбция). И при наличии искры или пламени одежда легко вспыхивает.

4. Кислород хорошо адсорбируется и абсорбируется техническими мас-лами с образованием взрывчатой смеси. Смесь взрывается самопроизвольно, без источника зажигания (химическая абсорбция).

Баланс – (от фр. balance – буквально “весы”) – количественное выражение сторон какого-либо процесса, которые должны уравновешивать друг друга. Другими словами, баланс – это равновесие, уравновешивание. Процессы горения на пожаре подчиняются фундаментальным законам природы, в частности, законам сохранения массы и энергии.

Для решения многих практических задач, а также для выполнения пожарно-технических расчетов необходимо знать количество воздуха, необходимого для горения, а также объем и состав продуктов горения. Эти данные необходимы для расчета температуры горения веществ, давления при взрыве, избыточного давления взрыва, флегматизирующей концентрации флегматизатора, площади легкосбрасываемых конструкций.

Методика расчета материального баланса процессов горения определяется составом и агрегатным состоянием вещества. Свои особенности имеет расчет для индивидуальных химических соединений, для смеси газов и для веществ сложного элементного состава.

Индивидуальные химические соединения – это вещества, состав которых можно выразить химической формулой. Расчет процесса горения в этом случае производится по уравнению реакции горения.

Составляя уравнение реакции горения, следует помнить, что в пожарно-технических расчетах принято все величины относить к 1 молю горючего вещества. Это, в частности, означает, что в уравнении реакции горения перед горючим веществом коэффициент всегда равен 1 .

Состав продуктов горения зависит от состава исходного вещества.

Элементы, входящие в состав горючего вещества

Продукты горения

Углерод С

Углекислый газ СО 2

Водород Н

Вода Н 2 О

Сера S

Оксид серы (IV) SO 2

Азот N

Молекулярный азот N 2

Фосфор Р

Оксид фосфора (V) Р 2 О 5

Галогены F, Cl, Br, I

Галогеноводороды HCl , HF , HBr , HI

Горение пропана в кислороде

    Записываем реакцию горения:

С 3 Н 8 + О 2 = СО 2 + Н 2 О

2. В молекуле пропана 3 атома углерода, из них образуется 3 молекулы углекислого газа.

С 3 Н 8 + О 2 = 3СО 2 + Н 2 О

3. Атомов водорода в молекуле пропана 8, из них образуется 4 молекулы воды:

С 3 Н 8 + О 2 = 3СО 2 + 4Н 2 О

4. Подсчитаем число атомов кислорода в правой части уравнения

5. В левой части уравнения так же должно быть 10 атомов кислорода. Молекула кислорода состоит из двух атомов, следовательно, перед кислородом нужно поставить коэффициент 5.

С 3 Н 8 + 5О 2 = 3СО 2 + 4Н 2 О

Коэффициенты, стоящие в уравнении реакции, называются стехиометрическими коэффициентами и показывают, сколько молей (кмолей) веществ участвовало в реакции или образовалось в результате реакции.

Стехиометрический коэффициент, показывающий число молей кислорода, необходимое для полного сгорания вещества, обозначается буквой .

В первой реакции = 5.

Горение глицерина в кислороде

1. Записываем уравнение реакции горения.

С 3 Н 8 О 3 + О 2 = СО 2 + Н 2 О

2. Уравниваем углерод и водород:

С 3 Н 8 О 3 + О 2 = 3СО 2 + 4Н 2 О.

3. В правой части уравнения 10 атомов кислорода.

В составе горючего вещества есть 3 атома кислорода, следовательно, из кислорода в продукты горения перешли 10 – 3 = 7 атомов кислорода.

Таким образом, перед кислородом необходимо поставить коэффициент 7: 2 = 3,5

С 3 Н 8 О 3 +3,5О 2 = 3СО 2 + 4Н 2 О.

В этой реакции = 3,5.

Горение аммиака в кислороде

Аммиак состоит из водорода и азота, следовательно, в продуктах горения будут вода и молекулярный азот.

NH 3 + 0,75 O 2 = 1,5 H 2 O + 0,5 N 2 = 0,75.

Обратите внимание, что перед горючим веществом коэффициент 1, а все остальные коэффициенты в уравнении могут быть дробными числами.

Горение сероуглерода в кислороде

Продуктами горения сероуглерода CS 2 будут углекислый газ и оксид серы (IV).

CS 2 + 3 O 2 = CO 2 + 2 SO 2 = 3.

Чаще всего в условиях пожара горение протекает не в среде чистого кислорода, а в воздухе. Воздух состоит из азота (78 %), кислорода (21 %), окислов азота, углекислого газа, инертных и других газов (1 %). Для проведения расчетов принимают, что в воздухе содержится 79 % азота и 21 % кислорода. Таким образом, на один объем кислорода приходится 3,76 объемов азота (79:21 = 3,76).

В соответствии с законом Авогадро и соотношение молей этих газов будет 1: 3,76. Таким образом, можно записать, что молекулярный состав воздуха (О 2 + 3,76 N 2 ).

Составление реакций горения веществ в воздухе аналогично составлению реакций горения в кислороде. Особенность состоит только в том, что азот воздуха при температуре горения ниже 2000 0 С в реакцию горения не вступает и выделяется из зоны горения вместе с продуктами горения.

Горение водорода в воздухе

Н 2 + 0,5(О 2 + 3,76 N 2 ) = Н 2 О + 0,5 3,76 N 2 = 0,5.

Обратите внимание, что стехиометрический коэффициент перед кислородом 0,5 необходимо поставить и в правой части уравнения перед азотом.

Горение пропанола в воздухе

С 3 Н 7 ОН + 4,5(О 2 + 3,76 N 2 ) =3СО 2 + 4Н 2 О +4,5 3,76 N 2

В составе горючего есть кислород, поэтому расчет коэффициента проводят следующим образом: 10 – 1 = 9; 9: 2 = 4,5.

Горение анилина в воздухе

С 6 Н 5 N Н 2 + 7,75(О 2 + 3,76 N 2 ) =6СО 2 + 3,5Н 2 О + 0,5 N 2 +7,75 3,76 N 2

В этом уравнении азот в правой части уравнения встречается дважды: азот воздуха и азот из горючего вещества.

Горение угарного газа в воздухе

СО + 0,5(О 2 + 3,76 N 2 ) =СО 2 + 0,5 3,76 N 2

Горение хлорметана в воздухе

СН 3 С l + 1,5(О 2 + 3,76 N 2 ) =СО 2 + НС l + Н 2 О +1,5 3,76 N 2

Горение диэтилтиоэфира в воздухе

2 Н 5 ) 2 S + 7,5(О 2 + 3,76 N 2 ) =4СО 2 + 5Н 2 О + SO 2 + 7,5 3,76 N 2

Горение диметилфосфата в воздухе

(СН 3 ) 2 НР О 4 + 3(О 2 + 3,76 N 2 ) =2СО 2 + 3,5Н 2 О + 0,5Р 2 О 5 + 3 3,76 N 2

В процессах горения исходными веществами являются горючее вещество и окислитель, а конечными - продукты горения.

1. Запишем уравнение реакции горения бензойной кислоты.

С 6 Н 5 СООН + 7,5(О 2 + 3,76 N 2 ) =7СО 2 + 3Н 2 О +7,5 3,76 N 2

2. Исходные вещества: 1 моль бензойной кислоты;

7,5 молей кислорода;

7,53,76 молей азота.

Газов воздуха всего 7,54,76 молей.

Всего (1 + 7,54,76) молей исходных веществ.

3. Продукты горения: 7 молей углекислого газа;

3 моля воды;

7,53,76 моля азота.

Всего (7 + 3 + 7,53,76) молей продуктов горения.

Аналогичные соотношения и в том случае, когда сгорает 1 киломоль бензойной кислоты.

Смеси сложных химических соединений или вещества сложного элементного состава нельзя выразить химической формулой, их состав выражается чаще всего в процентном содержании каждого элемента. К таким веществам можно отнести, например, нефть и нефтепродукты, древесину и многие другие органические вещества.



  • Разделы сайта