Функциональные свойства сердца. Физиология сердца свойства сердечной мышцы. Особенности строения сердца

Сердечная мышца, как и скелетная, обладает возбудимостью, способностью проводить возбуждения и сократимостью. К физиологическим особенностям сердечной мышцы относятся удлинённый рефрактерный период и автоматия.

Возбудимость сердечной мышцы. Сердечная мышца менее возбудима, чем скелетная. Для возникновения возбуждения в сердечной мышце необходимо применить более сильный раздражитель, чем для скелетной. Установлено, что величина реакции сердечной мышцы не зависит от силы наносимых раздражений (электрических, механических, химических и т.д.). Сердечная мышца максимально сокращается и на пороговое, и на более сильное по величине раздражение.

Проводимость. Волны возбуждения проводятся по волокнам сердечной мышцы и так называемой специальной ткани сердца с неодинаковой скоростью. Возбуждение по волокнам мышц предсердий распространяется со скоростью 0,8 - 1,0м/с, по волокнам мышц желудочков - 0,8-0,9м/c, по специальной ткани сердца - 2,0 - 4,2м/с. Возбуждение же по волокнам скелетной мышцы распространяется с гораздо большей скоростью, которая составляет 4,7 - 5м/с.

Сократимость. Сократимость сердечной мышцы имеет свои особенности. Первыми сокращаются мышцы предсердий, затем - папиллярные мышцы и субэндокардиальный слой желудочков. В дальнейшем сокращения охватывает и внутренний слой желудочков, обеспечивая тем самым движения крови из полостей желудочков в аорту и лёгочный ствол. Сердце для осуществления механической работы (сокращения) получает энергию, которая освобождается при распаде макроэргических фосфорсодержащих соединений (креатинфосфат, аденозинтрифосфат).

Рефрактерный период. В сердце в отличие от других возбудимых тканей имеется значительно выраженный и удлинённый рефрактерный период. Он характеризуется резким снижением возбудимости ткани в течение её активности.

Различают абсолютный и относительный рефрактерный период. Во время абсолютного рефрактерного периода, какой бы силы не наносили раздражение на сердечную мышцу, она не отвечает на него возбуждением и сокращением. Длительность абсолютного рефрактерного периода сердечной мышцы соответствует по времени систолы и началу диастолы предсердий желудочков. Во время относительного рефрактерного периода возбудимость сердечной мышцы постепенно возвращается к исходному уровню. В этот период сердечная мышца может ответить сокращением на раздражитель сильнее порогового. Относительный рефрактерный период обнаруживается во время диастолы предсердий и желудочков сердца. Благодаря выраженному рефрактерному периоду, который длится дольше, чем период систолы (0,1- 0,3с), сердечная мышца неспособна к титаническому (длительному) сокращению совершает свою работу по типу одиночного сокращения.

Автоматия сердца. Вне организма при определённых условиях сердце способно сокращаться и расслабляться, сохраняя правильный ритм. Следовательно, причина сокращений изолированного сердца лежит в нём самом. Способность сердца ритмически сокращается под влиянием импульсов, возникающих в нём самом, носит название автоматии .

В сердце различают рабочую мускулатуру, представленную поперечнополосатой мышцей, и атипическую, или специальную, ткань, в которой возникает и проводится возбуждение.

У высших позвоночных животных и человека атипическая ткань состоит из:

  • 1. синоаурикулярного узла (описан Кис и Флеком), располагающегося на задней стенке правого предсердия у места впадения половых вен;
  • 2. атриовентрикулярного (предсердно-желудочковый) узла (описан Ашоффом и Таварой), находящегося в правом предсердии вблизи перегородки между предсердиями и желудочками;
  • 3. пучка Гиса (предсердно-желудочковый пучок) (описан Гисом), отходящего от атриовентрикулярного узла одним стволом. Пучок Гиса, пройдя через перегородку между предсердиями и желудочками, делится на две ножки, идущие к правому и левому желудочками. Заканчивается пучок Гиса в толще мышц волокнами Пуркинье. Пучок Гиса - это единственный мышечный мостик, соединяющий предсердия с желудочками.

Сердце человека в разрезе:

1 -- левое предсердие; 2 -- легочные вены; 3 -- митральный клапан; 4 -- левый желудочек; 5 -- межжелудочковая перегородка; 6 -- правый желудочек; 7 -- нижняя полая вена; 8 -- трехстворчатый клапан; 9 -- правое предсердие; 10 -- синусно-предсердный узел; 11 -- верхняя полая вена; 12 -- предсердно-желудочковый узел.

Синоаурикулярный узел является ведущим в деятельности сердца (водитель ритма), в нём возникают импульсы, определяющие частоту сокращений сердца. В норме атриовентрикулярный узел и пучок Гиса являются только передатчиками возбуждений из ведущего узла к сердечной мышце. Однако им присуща способность к автоматии, только выражена она в меньшей степени, чем у синоаурикулярного узла, и проявляется лишь в условиях патологии.

Атипическая ткань состоит из малодифференцированных мышечных волокон. В области синоаурикулярного узла обнаружено значительное количество нервных клеток, нервных волокон и их окончаний, которые здесь образуют нервную сеть. К узлам атипической ткани подходят нервные волокна от блуждающих и симпатических нервов.

По современным представлениям, причина автоматии сердца объясняется тем, что в процессе жизнедеятельности в клетках синоаурикулярного узла накапливаются продукты конечного обмена (СО, молочная кислота и т.д.), которые и вызывают возникновение возбуждения в оптической ткани.

Электрофизиологические исследования сердца, проведённые на клеточном уровне, позволили глубже понять природу автоматики сердца. Установлено, что в волокнах ведущего и атриовентрикулярного узлов вместо стабильного потенциала в период расслабления сердечной мышцы наблюдается постепенное нарастание деполяризации. Когда последняя достигнет определённой величины (5-20мВ), возникает ток, действия ритма называют потенциалами автоматии. Таким образом, наличие диастолической деполяризации объясняет природу ритмической деятельности волокон ведущего узла. В рабочих волокнах сердца электрическая активность во время диастолы отсутствует.

У лягушки атипическая ткань сердца представлена синусным узлом (узел Ремака), расположенным в венозном синусе, и атриовентрикулярным узлом, находящимся в перегородке между предсердиями и желудочком, от которого отходят три нервных стволика, заканчивающихся узлами Догеля в мышце желудочка.

Значение отдельных частей проводящей системы можно изучить при помощи наложения лигатур (нить) на сердце лягушки по Станниусу.

1 - первая лигатура; 2 - первая и вторая лигатуры; 3 - первая, вторая и третья лигатуры.

На рисунке затемнены отделы сердца, которые сокращаются после наложения лигатур.

Первую лигатуру накладывают между венозным синусом и правым предсердием. В результате этого деятельность предсердий и желудочка прекращается, венозный же синус продолжает сокращаться. Это свидетельствует о том, что синусный узел в работе сердца является ведущим и передача импульсов к другим отделам сердца блокируется в результате наложения первой лигатуры.

Вторую лигатуру накладывают между предсердиями и желудочком. Она механически раздражает атриовентрикулярный узел и побуждает его к активности. Вследствие этого начинают сокращаться или предсердия, или желудочек, или все отделы сердца в зависимости от места наложения лигатуры. Однако сокращения предсердий и желудочка происходят в более медленном ритме, чем сокращения венозного синуса. С помощью второй лигатуры доказывают, что атриовентрикулярный узел также обладает автоматией, но выраженной в меньшей степени, чем у синусного узла.

Третью лигатуру накладывают на верхушку сердца. Верхушка сердца при этом не сокращается, т. е. автоматией не обладает. Однако на одиночные раздражения она отвечает одиночным сокращением, как обычная мышца.

Сердечный блок . При нарушении проведения возбуждения из ведущего узла к желудочкам может наблюдаться сердечный блок. Он возникает при нарушении проводимости импульсов в области атриовентрикулярного узла или пучка Гиса. При сердечном блоке, который может быть полным и неполным, отсутствует согласованность между ритмом предсердий и желудочков, что приводит к тяжёлым гемодинамическим расстройствам.

Фибрилляция сердца (трепетание, мерцание). Это нескоординированные сокращения мышечных волокон сердца. Во время фибрилляции сердца одни мышечные волокна могут находиться в состоянии сокращения, другие-расслабления. Фибриллярные подёргивания не могут обеспечить полноценного сокращения сердца и его работы как насоса, нагнетающего кровь в сосуды.

Сердечный цикл и его фазы . В деятельности сердца наблюдаются две фазы: систола (сокращение) и диастола (расслабление). Систола предсердий слабее и короче систолы желудочков: в сердце человека она длится 0,1-0,16с, а систола желудочков-0,3с. Диастола предсердий занимает 0,7-0,75с, желудочков-0,5-0,56с. Общая пауза (одновременная диастола предсердий и желудочков) сердца длится 0,4с. В течение этого периода сердце отдыхает. Весь сердечный цикл продолжается 0,8-0,86с.

Работа предсердий менее сложна, чем желудочков. Систола предсердий обеспечивает поступление крови в желудочки. Затем предсердия переходят в фазу диастолы, которая продолжается в течение всей систолы желудочков. Во время диастолы предсердия заполняются кровью.

Длительность различных фаз сердечного цикла зависит от частоты сердечных сокращений. При более частых сердечных сокращениях длительность каждой фазы уменьшается, особенно диастолы.

Сердечная мышца, так же как и скелетная, обладает возбудимостью, проводимостью и сократимостью, но эти свойства сердечной мышцы имеют свои особенности. Сердечная мышца сокращается медленно и работает в режиме одиночных сокращений, а не титанических как скелетная. Значение этого легко понять, если вспомнить, что сердце при своей работе перекачивает кровь из вен в артерии и должно наполняться кровью в промежутках между сокращениями.

Если сердце раздражать частыми ударами электрического тока, то оно в отличие от скелетных мышц не приходит в состояние непрерывного сокращения: наблюдаются отдельные более или менее ритмичные сокращения. Это объясняется длительной рефрактерной фазой, присущей сердечной мышце.

Рефрактерной фазой называется период не возбудимости, когда сердце утрачивает способность отвечать возбуждением и сокращением на новое раздражение.

Эта фаза длится весь период систолы желудочка. Если в это время раздражать сердце, то никакого ответа не последует. На раздражение, нанесенное в период диастолы, сердце, не успев расслабиться, отвечает новым внеочередным сокращением-экстрасистолой, после которой следует длительная пауза, называемая компенсаторной.

Сердце обладает автоматизмом. Это значит, что импульсы к сокращению возникают в нем самом, тогда как к скелетным мышцам они приходят по двигательным нервам из центральной нервной системы. Если перерезать все нервы, подходящие к сердцу, или даже отделить его от организма, оно будет длительно ритмически сокращаться.

Электрофизиологическими исследованиями установлено, что в клетках проводящей системы сердца ритмически возникает деполяризация клеточной мембраны, обусловливающая появление возбуждения, которое вызывает сокращение мускулатуры сердца.

Проводящая система сердца

Система, проводящая возбуждение в сердце, состоит из атипичных мышечных волокон, обладающих автоматизмом, и включает синусно-предсердный узел, расположенный в области впадения полых вен, предсердно-желудочковый узел, расположенный в правом предсердии, вблизи его границы с желудочками, и предсердно-желудочковый пучок. Последний, начинаясь от одноименного узла, проходит межпредсердную и межжелудочковую перегородки и делится на две ножки - правую и левую. Ножки опускаются под эндокардом по межжелудочковой перегородке к верхушке сердца, где ветвятся и в виде отдельных волокон - проводящих сердечных миоцитов (волокна Пуркинье) распространяются под эндокардом по всему желудочку.

В сердце здорового человека возбуждение возникает синусно-предсердном узле. Этот узел называют водителем ритма. По пучку атипических мышечных волокон оно распространяется к предсердно-желудочковому узлу, а от него по предсердно-желудочковому пучку - к миокарду желудочков. В предсердно-желудочковом узле скорость проведения возбуждения заметно снижается, поэтому предсердия успевают сократиться прежде, чем начнется систола желудочков. Таким образом, система, проводящая возбуждение, не только рождает импульсы возбуждения в сердце, но и регулирует последовательность сокращений предсердий и желудочков.

Ведущую роль синусно-предсердного узла в автоматизме сердца можно показать в опыте: при местном согревании области узла деятельность сердца ускоряется, а при охлаждении замедляется. Согревание и охлаждение других частей сердца не влияет на частоту его сокращений. После разрушения синусно-предсердного узла деятельность сердца может продолжаться, но в более медленном ритме - 30-40 сокращений в минуту. Водителем ритма становится предсердно-желудочковый узел. Эти данные свидетельствуют о градиенте автоматизма, о том, что автоматизм разных отделов системы, проводящей возбуждение неодинаков.

Материалы для самостоятельной работы студентов

(Составители – ,)

СВОЙСТВА СЕРДЕЧНОЙ МЫШЦЫ

1. Механизмы электрогенеза миокардиальных клеток

Функциональным элементом сердца является мышечное волокно - цепочка из клеток миокарда, соединенных “конец в конец” и заключенных в общую саркоплазматическую оболочку.

Потенциал покоя (ПП) миокардиальных волокон формируется за счет высокой проницаемости поверхностной протоплазматической мембраны миокардиального волокна для катионов калия. Возникновение потенциалов действия (ПД) обусловлено открытием на­триевых потенциалзависимых каналов поверхностной прото­плазма­тической мембраны. Значительный вклад в генерацию ПД миокардиальных волокон вносят потенциалзависимые кальциевые каналы. Возбуждение распространяется по сердцу без декре­мента, механизм распространения - электрический.

Сердечная мышца неоднородна в своем клеточном со­ставе. Различают типичные (сократительные) и атипичные волокна мио­карда. Они различаются по строению, функции и электрической активности..gif" width="503" height="321">

Рис. 2. Схема строения проводящей системы сердца.

вставочных дисках выше, чем в боковых, поэтому по направлению к желудочкам возбуждение движется быстрее, чем поперек предсердий. Тем са­мым достигается сокращение всего миокарда пред­сердий с одномоментным выходом волны возбуждения на атриовентрикулярный узел проводящей системы сердца. Как известно, предсердия отделены от желудочков фиброзной тканью, которая не способна проводить возбуждение. Вместе с тем, в этой преграде есть узкая щель - шириной чуть более 1 мм и длиной 1,5-2 мм, в которой расположен атрио­вентрикулярный узел, проводящий возбуждение из предсердий в желудочки. В местах контакта с типичным миокардом предсердий АТМВ атриовентри­кулярного узла очень тонки, вследствие чего им присуще значительное элек­трическое сопротивление саркоплазмы. В этом одна из причин резкого в 20-50 раз замедления распространения возбужде­ния в атриовентрикулярном узле по сравнению с предсердия­ми. Другая причина заключается в том, что АТМВ в верх­ней части узла имеют не продольное, а поперечное расположение. Следова­тельно, по направлению к желудочкам возбуждение передается через боковые, а не более эффективные торцевые вставочные диски.

Замедленное проведение возбуждения из предсердий в же­лудочки обеспечивает важную для нормальной работы сердца паузу между сокраще­ниями. Ее называют атриовентрикулярной задержкой. Желудочки начинают сокра­щаться примерно через 0,1 с от начала сокращения предсердий. Задержка нужна для того, чтобы кровь, накопленная пред­сердиями в диастолу, полностью перешла в желудочки до того, как они начнут сокращаться, нагнетая ее в аорту.

Из атриовентрикулярного узла возбуждение поступает в пучок Гиса . Там скорость проведения возбуждения возрастает до 2-3 м/c. Увеличение скорости обусловлено утолщением АТМВ и повыше­нием плотности ще­левых контактов во вставочных дисках. Ближе к верхушке сердца от пучка Гиса отходят волокна Пуркинье . Эти атипичные миокардиальные волокна вступают в контакт с ТМВ желудочков. Волокна Пуркинье обладают наибольшим диаметром по сравнению с другими волокнами миокарда. Поэтому скорость проведения возбуждения здесь достигает 4-5 м/с. Воз­буждение с отдельных волокон Пуркинье переходит на огром­ное число ТМВ практически одномоментно, благодаря чему разные участки желудоч­ков сокращаются синфазно.

3. Электромеханическое сопряжение в миокарде

Сокращение миокардиальных волокон, как и волокон скелетных мышц, инициируется потенциалом действия. Тем не менее временные соотноше­ния между параметрами потенциала действия и параметрами сокращения этих мышечных волокон различны. Длитель­ность потенциала действия скелетных мышц составляет несколько миллисе­кунд, и сокращение их начинается после завершения развития потенциала действия. В миокарде потенциал действия и сокращение в значительной степени перекрываются во времени. Потенциал действия клеток миокарда заканчивается пос­ле начала фазы расслабления. Поскольку последующее сокращение может возник­нуть только в результате очередного возбу­ждения, а это возбуждение в свою очередь возможно лишь по окончании периода аб­солютной рефрактерности предшествующе­го потенциала действия, сердечная мышца в отличие от скелетной не может отвечать на частые раздражения суммацией оди­ночных сокращений, или тетанусом . Это свойство миокарда имеет боль­шое значение для реализации нагнетательной функции сердца: с одной стороны - тетаническое сокращение, продолжающееся больше периода изгнания крови, препятствовало бы наполнению сердца, с другой - тетаническое сокращение сердца эквивалентно его остановке.

Невозможность сердечной мышцы давать тетанические сокращения заставило детально проанализировать вопрос о механизмах регуляции силы сердечных сокращений. Как было отмечено, сократимость сердца не может регулироваться путем суммации одиночных сокращений, со­кратимость мио­карда в отличие от ске­летных мышц, не может изменяться путем включения раз­лич­ного числа моторных еди­ниц, так как миокард предста­вляет собой функцио­нальный синцитий, и в каждом его сокращении участвуют все во­локна. Однако, эти несколько невыгодные с физиологической точки зрения особенности компенсируются тем, что в миокарде возможность регуляции сократимости обес­пе­чивается путем направленного изменения процессов возбуждения и электро­механического сопряжения.

Как организован механизм электромеханического сопряжения в миокарде? У человека и у млекопитающих структуры, отвечающие за электроме­ханическое сопряжение в скелетных мыш­цах, в основном, имеются и в волокнах серд­ца. Для мио­карда харак­терна система поперечных трубочек (Т-система); особенно хо­рошо она развита в желудочках, где эти трубочки образуют продольные ответв­ле­ния. Напротив, систе­ма продольных трубочек, служащих внутри­клеточным резервуаром Са2+, в мышце сердца выражена в меньшей степени, чем в скелетных мышцах. Как структурные, так и функциональные особенности миокарда свидетельствуют в пользу тесной взаимо­связи между внутриклеточными депо Са2+ и внеклеточной средой. Ключевым событием в сокращении служит вход в клетку Са2+во время потенциала действия. Значение входного кальциевого тока состоит не толь­ко в том, что он увеличивает длительность потенциала действия и, как следствие, ре­фракторного периода: перемещение Са2+ из наружной среды в клетку создает условия для регуляции силы сокращения, так как чем больше кальция оказывается вблизи актина и миозина, тем сильнее сокращается

Активация" href="/text/category/aktivatciya/" rel="bookmark">активацией сократительного аппарата. Начало сокращения связано с выходом кальция в зону актина и миозина из продольных трубочек в ходе деполяризации мембраны. Кальций, поступающий в кардиомиоцит через кальциевые каналы в фазу плато потенциала действия кардиомиоцита, пополняет запасы кальция в продольных трубочках.

На концентрацию кальция, активирую­щего контрактильный ме­ха­низм, существенно влияет его количество в продольных трубочках, при этом показано, что значительная часть входящего в клетку Са2+ пополняет его запасы, обеспечивая достаточную эффективность очередных сокращений.

Таким образом, потенциал действия влияет на сократимость по меньшей мере двумя путями. 1. Он играет роль пускового механизма, вызывающего сокра­щение путем высвобождения Са2+ преимущественно из внутриклеточных депо. 2. Он пополняет запасы Са2+, создавая благоприятные условия для последующих сокра­щений.

Как выяснилось, целый ряд агентов оказывает значимое влияние на сокращение миокарда, изменяя длительность потенциала действия, что отра­жается на поступлении Са2+ внутрь миокардиоцитов. Например, ацетилхолин, выделяющий в окончаниях блуждающего нерва, уменьшая продолжительность потенциалов действия предсердной мышцы, параллельно усиливая прони­цаемость поверхностной мембраны клеток синоатриального узла для калия, вызывая тем самым их гиперполяризацию и уменьшение входного тока Са2+, вызывает уменьшение частоты и силы сердечных сокращений (отрицательный хронотропный, инотропный, дромотропный эффекты - см. ниже.). Напротив, норадреналин, выделяющийся в окончаниях симпатических нервных волокон, усиливая проницаемость для Са2+ , вызывает повышение частоты и увеличение силы сердечных сокращений (положительный хроно­тропный, инотропный, дромотропный эффекты - см. ниже).

Так назы­ваемый феномен лестницы (нарастание силы сокращений при их возобновлении после временной остановки) также связан с наращиванием внутриклеточной фракции Са2+. Сила сокращения сердца быстро изменяется при изменении содержания Са2+ во внеклеточной жидкости. Удаление Са2+ из внешней среды приводит к полному электро­механическому разобщению. Ряд веществ, блокирующих вход Са2+ во время потенциала действия, оказывает та­кой же эффект, как и удаление Са2+ из внешней среды. К таким веществам отно­сятся двухвалентные катионы (Ni 2+ , Со2+, Mn 2+ ), а также некоторые органические со­единения - антагонисты кальция (верапамил, нифедипин). При повышении внеклеточно­го содержа­ния Са2+ или при действии фармакологических препаратов, увеличивающих вход Са2+ во время развития потенциала действия, сократимость сердца увеличивается. Механизм действия сердечных гликозидов (дигоксин, строфантин) частично связан именно с увеличением внутриклеточной фракции Са2+.

4. Биофизические основы электрокардиографии

Особенности распространения возбуждения по сердцу отобража­ются в элек­трокардиограмме (ЭКГ ), которая имеет харак­терную форму (рис. 4). Элемен­тарной моделью генератора ЭКГ является электрический диполь. При распространении возбуждения по миокарду формируется множество диполей, которые законо­мерно изменяют свои количест­венные характеристики и направление. В каждый момент времени воз­никают новые диполи, исчезают прежние. В результате на поверхности сердечной мышцы создается сложная мозаика распределения электрических потенциалов. Резуль­тирующий диполь­ный момент миокарда, ра­вный векторной сумме отдельных диполей, получил название интегрального электрического вектора сердца (ИЭВС). Ритмичный характер ав­томатизма водителя ритма, а также пере­дача возбуждения посредством электриче­ских синапсов обусловливают синфазность возбуди­тельного процесса в миокардиальных волокнах. Поэтому ИЭВС имеет срав­нительно большую амплитуду прежде всего при деполяризации желудочков, чем соз­­да­ется высокий уровень биопотенциалов, отражающих сердечную деятель­ность даже на поверхности тела. Ежемоментно амплитуда и направление ИЭВС различ­ны. Измеряя их, врач получает сведения о движении волны возбуждения по сердцу, что позволяет ему оценить свойства миокарда и в случае нарушений сердечной деятельности понять их природу.

https://pandia.ru/text/80/111/images/image005_20.jpg" width="306 height=259" height="259">

Рис. 5. Соотношение векторэлектрокардиограммы (А) и электрокардиограммы (Б).

В данном случае фигуры Лиссажу представляют собой траектории движения ИЭВС, описываемые его концом на плоскости, перпендикулярной направлению распространения возбуждения по миокарду. Такое исследование электрической ак­тивности сердца называется векторэлектрокардиоскопией (ВЭКС ). На век­тор­­электрокардио­грамме выделяют обычно три эллипсоподобные фигуры. Самая мелкая из них отображает деполяризацию предсердий, самая крупная - деполя­ризацию желудочкой, средняя - их реполяризацию.

Амплитуду вектора оценивают посредством измерения его проекций на координатные оси. Любое из отведений ЭКГ есть не что иное как проекция интегрального электрического векто­ра сердца на соответствующую координатную ось.

Рис. 6. Схема стандартных электрокардиографических отведений (треугольник Эйнтховена)

В разнообразных способах отведения ЭКГ вопло­щены различные системы координат. Широко распространена координатная система, элемен­том которой является равносторон­ний треуголь­ник (рис. 6). Она пред­ложена основоположни­ком электрокардиографии В. Эйнтховеном и получила название системы стандартных отведений. При ее практической реализации накладывают электроды на левую ногу и обе руки. Первым отведением считают регистрацию разности потенциалов между правой и левой рукой, вторым - между правой рукой и левой ногой, третьим - между левой рукой н левой ногой. Применяются и другие способы отведений ЭКГ, для чего используются иные координатные системы. Вне зависимости от способа отведе­ния ЭКГ ее зубцы отражают электрическую активность сердца в соответствующий момент сердечной де-ятель­ности: зубец Р формируется при возбуждении предсердий, комплекс QRS - при возбуждении желудочков, зубец Т - при их реполяризации. Таким образом, от­клонения от нормы, обнаруживаемые в том или ином элементе ЭКГ, можно адресовать соответствующему отделу сердца.

Важным параметром ЭКГ служат временные интервалы. По ним оценивают скорость распространения возбуждения в каж­дом из отделов проводящей сис­темы сердца. Изменения скоро­сти проведения наблюдаются при повреж­дениях сердечной мышцы. Даже мелкий очаг поражения миокарда (диаметром 5-10 мкм) вызывает задержку в рас­пространении возбуждения на 0,1 мс.

В стандартных отведениях зубец Р имеет амплитуду не бо­лее 0,25 мВ и длительность 0,07-0,10 с. Интервал PQ, отображающий атрио-вентрикулярную задержку, составляет 0,12-0,21 с при частоте сердечных сокращений порядка 70 /мин. Комплекс QRS наблюдается в течение всего времени, пока возбуждение распространяется по желудочкам - от 0,06 до 0,09 с. Зубец Q в трети наблю­дений отсутствует в нормаль­ной ЭКГ, а когда обнаруживается, не превышает 0,25 мВ. Зубец R обладает максимальной амплитудой среди других эле­ментов ЭКГ. Она составляет 0,6-1,6 мВ. Зубец S -часто отсутствует, но иногда достигает 0,6 мВ. Он появляется в тот момент, когда деполяризация охватывает участки желудочков, прилежащие к предсердиям. Основание желудочков возбужда­ется в последнюю очередь. Сегмент S-T при пульсе 65-70 /мин составляет 0,12 с. Длительность зубца Т немного больше - от 0,12 до 0,16 с. Его амплитуда находится в преде­лах 0,25-0,6 мВ.

Зубец Р возникает на ЭКГ примерно за 0,02 с до начала сокращения предсердий, а комплекс QRS - за 0,04 с до начала сокращения желудочков. Сле­довательно, электрические проявления возбужде­ния предше­ствуют меха-ническим.

Имея ряд ЭКГ, по крайней мере, две, снятые в 1 и 3 отведениях, можно синтезировать ИЭВС. В медицинской лите­ратуре его называют электрической осью сердца - отрезок прямой, соединяющий два сечения миокарда, облада-ющих в данный момент наибольшей разностью потенциалов. Направление электри­ческой оси сердца в ходе рас­простра­нения возбуждения по миокарду постоянно изменяется. При­нято определять среднюю электрическую ось сердца. Так назы­вают вектор, который можно построить в промежутке между началом и окончанием деполяризации миокарда желудочков. По расположению средняя электрическая ось близка анатоми­ческой оси сердца. По­строение средней электрической оси дает представление о по­ложении сердца в грудной полости. Отклонения оси вправо или влево служат признаками изменений миокарда соответствую­щего желудочка.

Сердечная мышца обладает следующими физиологическими свойствами: возбудимостью, проводимостью, сократимостью и автоматией.

Возбудимость – это способность (или свойство) реагировать на раздражение, т.е. возбуждаться. Это свойство характерно для всех возбудимых тканей (нервов, мышц, железистых клеток), но разные ткани обладают разной возбудимостью (этот вопрос более подробно рассматривается в разделе «физиология возбудимых тканей»). Любая возбудимая ткань при возбуждении меняет свою возбудимость и имеет следующие фазы: абсолютная рефрактерность (отсутствие возбудимости), относительная рефрактерность (возбудимость ниже нормы), супернормальность или экзальтация (повышенная возбудимость). Продолжительность этих фаз у разных тканей разная, и имеет, как правило, важное функциональное назначение. Так, у нервов и скелетных мышц эти фазы намного короче, чем у сердечной и гладких мышц.

Ниже приводятся схематические изображения (рис 1) изменения возбудимости в разные периоды одиночного сокращения сердечной (пунктирная линия) и скелетной (сплошная линия) мышц

Рис.1. 1-латентный период, 2-период сокращения, 3-период расслабления

а) абсолютная рефрактерность

б) относительная рефрактерность

в) фаза супернормальности (экзальтации)

а также сопоставление (рис 2) фаз рефрактерности с фазами потенциала действия скелетной (А) и сердечной (Б) мышц.

Рис. 2. 1 - латентный период, 2 - фаза деполяризации, 3 - фаза реполяризации, 3а - плато (медленная деполяризация или начальная реполяризация); а) - абсолютная рефрактерность, б) относительная рефрактерность, в) фаза супернормальности (или фаза экзальтации

Во время фазы абсолютной рефрактерности ткань не возбудима, во время относительной рефрактерности возбудимость снижена, и она не восстановилась еще до нормы. Наличие продолжительной абсолютной рефрактерности у сердечной мышцы является причиной, предохраняющей сердце от повторного возбуждения (а стало быть, сокращения) в период систолы. Сердце приобретает способность к повторному сокращению на приходящий импульс во время диастолы, т.е. в фазу относительной рефрактерности, в этот период возникает так называемая экстрасистола (дополнительная систола). После экстрасистолы следует компенсаторная пауза за счет выпадения одного естественного сокращения, так как очередной импульс попадает на абсолютную рефрактерность экстрасистолы. Это явление чаще наблюдается при желудочковой экстрасистолии и тахикардии. Экстрасистолы по происхождению могут быть наджелудочковыми (из синусного узла, предсердий или атриовентрикулярного узла) и желудочковыми. Экстрасистолия, как правило, сопровождается аритмией, которая при некоторых заболеваниях сердца (инфаркт миокарда, гипокалиемия, растяжение желудочков и т.д.) может переходить в фибрилляцию (трепетание и мерцание предсердий или желудочков). Наибольшая опасность возникновения этих явлений наблюдается тогда, когда экстрасистола попадает в так называемый «уязвимый период». Таким уязвимым местом или периодом считается фаза реполяризации желудочков и соответствует восходящей части зубца Т на ЭКГ. При наличии эктопических зон вероятность возникновения фибрилляции желудочков многократно возрастает.

Мышечная ткань предсердий и желудочков ведет себя как функциональный синцитий, а вставочные диски между кардиомиоцитами не препятствуют проведению возбуждения, и происходит одновременное возбуждение всех клеток. Поэтому следующей особенностью возбудимости сердечной мышцы является то, что сердце работает по закону «все или ничего», тогда как скелетная мышца и нервы не подчиняются этому закону (лишь отдельные волокна скелетных мышц и нервов функционируют по закону « все или ничего»).

Автоматизм . Ритмические сокращения сердца обусловлены импульсами, генерируемыми в самом сердце. Сердце лягушки, помещенное в рингеровский (физиологический) раствор может сокращаться в прежнем ритме длительное время. Изолированное сердце теплокровных животных также может сокращаться длительно, но требуется соблюдение ряда условий: пропускать (перфузировать) Рингер-Локковский раствор под давлением через сосуды сердца (канюля в аорте), tº раствора = 36-37º, через раствор пропускать кислород или просто воздух (аэрация), в растворе должна содержаться глюкоза. В норме ритмические импульсы образуются только специализированными клетками водителя ритма сердца (пейсмекера), которым является сино-атриальный узел (СА узел). Однако в условиях патологии остальные участки проводящей системы сердца способны самостоятельно генерировать импульсы. Явления автоматизма целиком и полностью зависят от проводящей системы сердца, т.е. она выполняет также функцию проведения, обеспечивает, таким образом, свойство проводимости. Как распространяется возбуждение по проводящей системе сердца к рабочему миокарду? От пейсмекера – синоатриального узла, который расположен в стенке правого предсердия у места впадения в него верхней полой вены, возбуждение вначале распространяется по рабочему миокарду обоих предсердий. Единственным путем дальнейшего распространения возбуждения является атриовентрикулярный узел. Здесь происходит небольшая задержка – 0,04-0,06 сек (атриовентрикулярная задержка) проведения возбуждения. Эта задержка имеет принципиально большое значение для последовательного (не одновременного) сокращения предсердий и желудочков. Благодаря этому кровь из предсердий может поступить в желудочки. Если бы не было этой задержки, то происходило бы одновременное сокращение предсердий и желудочков, а так как последние развивают значительное полостное давление, то кровь не смогла бы поступить из предсердий в желудочки. Пучок Гиса, его левая и правая ножки и волокна Пуркинье проводят импульсы со скоростью примерно 2 м/с, и различные участки желудочков возбуждаются синхронно. Скорость распространения импульса от субэндокардиальных окончаний волокон Пуркинье по рабочему миокарду составляет около 1 м/с. Средний ритм сердца в норме, а стало быть, количество импульсов в синоатриальном узле составляет 60-80 в 1 мин. При блокаде передачи импульсов от СА узла пейсмекерную функцию берет на себя АВ-узел с ритмом около 40-50 в 1 мин. Если будет выключен и этот узел, то пейсмекером становится пучок Гиса, при этом частота сердечных сокращений будет 30-40 в минуту. Но даже волокна Пуркинье могут спонтанно возбуждаться (20 в 1 мин.) при выпадении функции пучков Гиса.

СА-узел называют номотопным (нормально расположенным) центром автоматии, а очаги возбуждения в остальных отделах проводящей системы сердца – гетеротопными (ненормально расположенными) центрами. Эти ритмы возникают не за счет основного водителя (СА-узла) и они носят название «заместительных ритмов». Кроме перечисленных гетеротопных центров в патологии (инфаркт миокарда, гипокалиемия, растяжение) могут появляться эктопические водители ритма сердца. Они локлизуются за пределами проводящей системы сердца. При полном исчезновении автоматизма сердца применяются искусственные водители ритма сердца, т.е. искусственное электрическое раздражение желудочков либо путем подачи тока через интактную грудную клетку, либо через имплантированные электроды. Такое искусственное раздражение сердца иногда применяется годами (миниатюрные водители ритма сердца, расположенные под кожей и работающие от батареек). Способность сердца возбуждаться за счет автоматизма имело большое значение для разработки стратегии и тактики хирургической пересадки сердца. Первоначально эти исследования были проведены Кулябко, Неговским и Синицыным.

СОКРАТИМОСТЬ. Сердце сокращается по типу одиночного сокращения, т.е. одно сокращение на одно раздражение. Скелетная мышца сокращается тетанически. Такая особенность сердечной мышцы обусловлена продолжительной абсолютной рефрактерностью, которая занимает всю систолу. Сокращение предсердий и желудочков имеет последовательный характер. Сокращение предсердий начинается в области устьев полых вен, и кровь движется только в одном направлении, а именно в желудочки через предсердно-желудочковые отверстия. В это время устья полых вен сжимаются, и кровь поступает в желудочки. В момент диастолы желудочков атриовентрикулярные клапаны открываются. При сокращении желудочков кровь устремляется в сторону предсердий и захлопывает створки этих клапанов. Клапаны не могут открыться в сторону предсердий, т.к. этому препятствуют сухожильные нити, которые прикрепляются к сосочковым мышцам. Повышение давления в желудочках при их сокращении приводит к изгнанию крови из правого желудочка в легочную артерию, а из левого желудочка – в аорту. В устьях этих сосудов имеются полулунные клапаны. Эти клапаны расправляются в момент диастолы желудочков за счет обратного тока крови в сторону желудочков. Эти клапаны выдерживают большое давление (особенно аортальный) и не пропускают кровь из аорты и легочной артерии в желудочки. Во время диастолы предсердий и желудочков давление в камерах сердца падает и кровь из вен поступает в предсердия, а затем в желудочки.

Сердечная мышца, как и скелетные мышцы, обладает свойством возбудимости, способностью проводить возбуждение и сократимостью. К физиологическим особенностям сердечной мышцы относятся удлиненный рефрактерный период и автоматизм.

1. Возбудимость сердечной мышцы. Сердечная мышца менее возбудима, чем скелетная. Для возникновения возбуждения в сердечной мышце необходим более сильный раздражитель, чем для скелетной. Установлено, что реакция сердечной мышцы не зависит от силы наносимых раздражений (электрических, механических и т.д.). Сердечная мышца максимально сокращается и на пороговое и на более сильное по величине раздражение.

2. Проводимость. Волны возбуждения проводятся по волокнам сердечной мышцы и так называемой специальной ткани сердца с неодинаковой скоростью. Возбуждение по волокнам мышц предсердий распространяется со скоростью 0,8-1,0 м/с, по волокнам мышц желудочков – 0,8-0,9 м/с, по специальной ткани сердца – 2,0-4,2 м/с. Возбуждение же по волокнам скелетной мышцы распространяется с гораздо большей скоростью, которая составляет 4,7 –5 м/с.

3. Сократимость сердечной мышцы имеет свои особенности. Первыми сокращаются мышцы предсердий, затем – сосочковые мышцы и субэндокардиальный слой мышц желудочков. В дальнейшем сокращение охватывает и внутренний слой желудочков, обеспечивая тем самым движение крови из полостей желудочков в аорту и легочный ствол. Сердце для осуществления механической работы (сокращения) получает энергию, которая освобождается при распаде макроэргических фосфорсодержащих соединений (креатинфосфат, аденозинтрифосфат).

4. Рефрактерный период – это период невосприимчивости мышцы сердца к действию других раздражителей. В отличие от других возбудимых тканей сердце имеет значительно выраженный и удлиненный рефрактерный период. Благодаря выраженному рефрактерному периоду, длящемуся дольше, чем период систолы, сердечная мышца не способна к длительному сокращению и совершает работу по типу одиночного мышечного сокращения

5. Автоматизм – способность сердечной мышцы приходить в состояние возбуждения и ритмического сокращения без внешних воздействий. Обеспечивается проводящей системой, состоящей из синусно-предсердного, предсердно-желудочкового узлов и предсердно-желудочкового пучка. Миокард функцией автоматизма не обладает.

Большой и малый круг кровообращения

Деление на большой и малый круги кровообращения условно: они сообщены между собой, один является продолжением другого, т.е. два круга включены последовательно, это замкнутая система.

Две части сердечно-сосудистой системы названы так потому, что каждая из них начинается в сердце и возвращается в сердце, но по отдельности замкнутых кругов они не образуют. Фактически имеется один общий замкнутый круг кровообращения. Из левого желудочка кровь поступает в аорту, далее по артериям она следует в капилляры всех органов и тканей организма, по венам возвращается в правое предсердие, правый желудочек и по легочной артерии поступает в легкие. Из легких по легочным венам артериальная кровь течет в левое предсердие и далее – в левый желудочек. Циркуляция крови по сосудам возможна только при наличии их тонуса, поскольку суммарный объем расслабленных сосудов больше объема крови. Кровь циркулирует по кругу в результате циклической деятельности сердца, главной функцией которого является нагнетание крови в артериальную систему организма.


Гемодинамика

Несмотря на ритмические сокращения сердца и поступление крови в сосуды порциями, в сосудах она течет непрерывно. Это обеспечивается эластичностью стенок артерий, которые во время систолы растягиваются, а во время диастолы спадаются и обеспечивают непрерывный ток крови. Давление, под которым кровь находится в сосудах, называется кровяным и постепенно меняется в зависимости от фазы сердечного цикла. Во время систолы желудочков кровь с силой выбрасывается в аорту, давление при этом максимально - это систолическое, или максимальное, давление. Во время диастолы давление понижается - диастолическое , или минимальное. Разность между систолическим и диастолическим давлением называется пульсовым давлением. В норме пульсовое давление равно 40 (35-55) мм рт. ст. Среднединамическое давление – это сумма минимального и одной трети пульсового давления. Выражает энергию непрерывного движения крови и представляет собой постоянную величину для данного сосуда и организма.

На величину артериального давления влияют различные факторы: возраст, положение тела, время суток, место измерения (правая или левая рука), состояние организма, физические и эмоциональные нагрузки и т.д.

Самое высокое давление в аорте (130 мм рт. ст.), в крупных артериях оно понижается на 10 % и в плечевой артерии составляет 110-125 мм рт. ст. (систолическое) на 60-85 мм рт. ст. (диастолическое). В капиллярах снижается до 15-25 мм рт. ст. Из капилляров кровь поступает в венулы (12-15 мм рт. ст.), затем в вены (3-5 мм рт. ст.). В полых венах давление составляет всего 1-3 мм рт. ст., а в самом предсердии равно нулю.

Скорость кровотока в различных участках кровяного русла неодинакова Скорость кровотока в различных участках кровяного русла неодинакова. Она зависит от суммарного просвета кровеносных сосудов данного вида. Чем меньше просвет, тем больше скорость тока крови, и наоборот. Самой узкой частью в кровеносной системе является аорта, в ней скорость самая высокая -0,5-1 м/с. Суммарный просвет всех капилляров в 1000 раз больше просвета аорты, соответственно, и скорость тока крови в 1000 раз меньше, чем в аорте (0,5-1 мм/с). Физиологический смысл медленного течения крови в капиллярах - газообмен, переход питательных веществ из крови и продуктов обмена веществ из тканей. Удетей скорость кровотока выше за счет частых сердечных сокращений. У новорожденного полный кругооборот совершается за 12 с, в возрасте 3 года -за 15 с, в 14 лет -за 18 с, у взрос-лых - за 22 с. С возрастом кругооборот крови замедляется, что связано со снижением эластичности сосудов и увеличением их длины.

У детей давление значительно ниже, чем у взрослых. Это связано с тем, что у детей больше развита капиллярная сеть и шире просвет кровеносных сосудов. В период полового созревания рост сердца опережает рост кровеносных сосудов. Это выражается в так называемой юношеской гипертензии, которая с возрастом проходит. У здорового человека давление поддерживается на постоянном уровне, но повышается при мышечной деятельности, эмоциональных состояниях.



  • Разделы сайта