Скелетные мышцы. Группы скелетных мышц. Строение и функции скелетных мышц. Как работает скелетная мускулатура

Основным элементом скелетной мышцы является мышечная клетка. В связи с тем, что мышечная клетка по отношению к своему поперечному сечению (0,05-0,11мм) относительно длинна (волокна бицепса, например, имеют длину до 15 см), ее называют также мышечным волокном.

Скелетная мышца состоит из большого количества этих структурных элементов, составляющих 85-90% от ее общей массы. Так, например, в состав бицепса входит более одного миллиона волокон.

Между мышечными волокнами расположена тонкая сеть мелких кровеносных сосудов (капилляров) и нервов (приблизительно 10% от общей массы мышцы). От 10 до 50 мышечных волокон соединяются в пучок. Пучки мышечных волокон и образуют скелетную мышцу. Мышечные волокна, пучки мышечных волокон и мышцы окутаны соединительной тканью.

Мышечные волокна на своих концах переходят в сухожилия. Через сухожилия, прикрепленные к костям, мышечная сила воздействует на кости скелета. Сухожилия и другие эластичные элементы мышцы обладают, кроме того, и упругими свойствами. При высокой и резкой внутренней нагрузке (сила мышечной тяги) или при сильном и внезапном внешнем силовом воздействии эластичные элементы мышцы растягиваются и тем самым смягчают силовые воздействия, распределяя их в течение более продолжительного промежутка времени.

Поэтому после хорошей разминки в мускулатуре редко происходят разрывы мышечных волокон и отрывы от костей. Сухожилия обладают значительно большим пределом прочности на растяжение (около 7000 Н/кв см), чем мышечная ткань (около 60 Н/кв см), где Н – ньютон, поэтому они гораздо тоньше, чем брюшко мышцы. В мышечном волокне содержится основное вещество, называемое саркоплазмой. В саркоплазме находятся митохондрии (30-35% от массы волокна), в которых протекают процессы обмена веществ и накапливаются вещества, богатые энергией, например фосфаты, гликоген и жиры. В саркоплазму погружены тонкие мышечные нити (миофибриллы), лежащие параллельно длинной оси мышечного волокна.

Миофибриллы составляют в совокупности приблизительно 50% массы волокна, их длина равна длине мышечных волокон, и они являются, собственно говоря, сократительными элементами мышцы. Они состоят из небольших, последовательно включаемых элементарных блоков, именуемых саркомерами (рис. 33).

Рис. 33. Схема скелетной мышцы: мышца (до 5 см), пучок мышечных волокон (0,5 мм), мышечное волокно (0,05-0,1 мм), миофибрилла (0,001-0,003 мм). Цифры в скобках обозначают приблизительный размер поперечного сечения строительных элементов мышцы

Так как длина саркомера в состоянии покоя равна приблизительно лишь 0,0002 мм, то для того, чтобы, к примеру, образовать цепочки из звеньев миофибрилл бицепса длиной 10-15 см, необходимо "соединить" огромное количество саркомеров. Толщина мышечных волокон зависит главным образом от количества и поперечного сечения миофибрилл.

В миофибриллах скелетных мышц наблюдается правильное чередование более светлых и более темных участков. Поэтому часто скелетные мышцы называют поперечнополосатыми. Миофибрилла состоит из одинаковых повторяющихся элементов, так называемых саркомеров. Саркомер ограничен с двух сторон Z-дисками. К этим дискам с обеих сторон прикрепляются тонкие актиновые нити. Нити актина обладают низкой плотностью и поэтому под микроскопом кажутся более прозрачными или более светлыми. Эти прозрачные, светлые области, располагающиеся с обеих сторон от Z-диска, получили название изотропных зон (или I-зон).
В середине саркомера располагается система толстых нитей, построенных преимущественно из другого сократительного белка, миозина. Эта часть саркомера обладает большей плотностью и образует более темную анизотропную зону (или А-зону). В ходе сокращения миозин становится способным взаимодействовать с актином и начинает тянуть нити актина к центру саркомера. Вследствие такого движения уменьшается длина каждого саркомера и всей мышцы в целом. Важно отметить, что при такой системе генерации движения, получившей название системы скользящих нитей, не изменяется длина нитей (ни нитей актина, ни нитей миозина). Укорочение является следствием лишь перемещения нитей друг относительно друга. Сигналом для начала мышечного сокращения является повышение концентрации Са 2+ внутри клетки. Концентрация кальция в клетке регулируется с помощью специальных кальциевых насосов, встроенных в наружную мембрану и мембраны саркоплазматического ретикулума, который оплетает миофибриллы.

Двигательная единица (ДЕ) – группа мышечных волокон, иннервируемых одним мотонейроном. Мышца и ее нервный привод состоят из большого количества параллельно расположенных ДЕ (рис. 34).

Рис. 34. Строение двигательной единицы: 1 – спинной мозг; 2 – мотонейроны; 3 – аксоны; 4 – мышечные волокна

В нормальных условиях ДЕ работает как единое целое: посылаемые мотонейроном импульсы приводят в действие все входящие в ее состав мышечные волокна. Благодаря тому, что мышца состоит из множества ДЕ (в крупных мышцах до несколько сотен), она может работать не всей массой, а по частям. Это свойство используется при регуляции силы и скорости мышечного сокращения. В естественных условиях частота импульсов, посылаемых мотонейронами в ДЕ, находится в пределах 5–35 имп./с, лишь при максимальных мышечных усилиях удается зарегистрировать частоту разрядов выше 50 имп./с.

Компоненты ДЕ обладают различной лабильностью: аксон – до 1000 имп./с, мышечное волокно – 250-500, мионевральный синапс – 100–150, тело мотонейрона – до 50 имп./с. Утомляемость компонента тем выше, чем меньше его лабильность.

Различают быстрые и медленные ДЕ. Быстрые обладают большой силой и скоростью сок-ращения в короткое время, высокой активностью гликолитических процессов, медленные рабо-тают в условиях высокой активности окислительных процессов длительно, при меньшей силе и скорости сокращения. Первые быстро утомляемы, содержат много гликогена, вторые выносливы – в них много митохондрий. Медленные ДЕ активны при любом напряжении мышцы, тогда как быстрые ДЕ активны лишь при сильных мышечных напряжениях.

Основываясь на анализе ферментов мышечных волокон, их классифицируют на три вида: тип I, тип IIа, тип IIб.

В зависимости от скорости сокращения, аэробной и анаэробной возможности используют понятия: медленно-сокращающийся, окислительный тип (МО), быстро-сокращающийся, окислительно-гликолитический тип (БОГ) и быстро-сокращающийся, гликолитический тип (БГ).

Существуют и другие классификации ДЕ. Так, основываясь на двух параметрах – снижении прерывистого тетануса и сопротивлении утомлению – ДЕ делят на три группы (Burke, 1981): медленно сокращающиеся, невосприимчивые к утомлению (тип S); быстро сокращающиеся невосприимчивые к утомлению (тип FR) и быстро сокращающиеся восприимчивые к утомлению (тип FF).

Волокна I типа соответствуют волокнам типа МО, волокна IIа типа– волокнам типа БОГ, а волокна IIб типа– волокнам типа БГ. Мышечные волокна типа МО относятся к ДЕ типа S, волокна типа БОГ – к ДЕ типа FR, а волокна типа БГ – к ДЕ типа FF.

Каждая мышца человека содержит совокупность всех трех типов волокон. ДЕ типа FF характеризуется наибольшей силой сокращения, наименьшей продолжительностью сокращения и наибольшей восприимчивостью к утомлению.

Говоря о пропорциях различных мышечных волокон у человека, следует отметить, что и у мужчин, и у женщин несколько больше медленных волокон (по данным различных авторов –
от 52 до 55%).

Имеется строгая зависимость между количеством медленно- и быстро сокращающихся волокон в мышечной ткани и спортивными дости­жениями на спринтерских и стайерских дистанциях.

Икроножные мышцы чемпионов мира по марафону содержат 93–99% медленных волокон, тогда как у сильнейших спринтеров мира в этих мышцах больше количество быстрых волокон (92%).

У нетренированного человека число двигательных единиц, которые могут быть мобили-зованы при максимальных силовых напряжениях, обычно не превышает 25–30%, а у хорошо тренированных к силовым нагрузкам лиц число вовлеченных в работу моторных единиц может превышать 80–90%. В основе этого явления лежит адаптация центральной нервной системы, приводящая к повышению способности моторных центров мобилизовывать большее число мотонейронов и к совершенствованию межмышечной координации (рис. 35).

Рис. 35. Характеристика двигательных единиц

Скелетные мышцы построены из поперечнополосатой скелетной мышечной ткани. Они являются произвольными, т.е. их сокращение осуществляется сознательно и зависит от нашего желания. Всего в теле человека насчитывается 639 мышц, 317 из них - парные, 5 - непарные.

Скелетная мышца - это орган, имеющий характерную форму и строение, типичную архитектонику сосудов и нервов, построенный в основном из поперечнополосатой мышечной ткани, покрытый снаружи собственной фасцией, обладающий способностью к сокращению.

Принципы классификации мышц . В основу классификации скелетных мышц человеческого организма положены различные признаки: область тела, происхождение и форма мышц, функция, ана-

томо-топографические взаимоотношения, направление мышечных волокон, отношение мышцы к суставам. По отношению к областям человеческого тела различают мышцы туловища, головы, шеи и конечностей. Мышцы туловища в свою очередь разделяют на мышцы спины, груди и живота. Мышцы

верхней конечности соответственно имеющимся частям скелета делят на мышцы пояса верхней конечности, мышцы плеча, предплечья и кисти. Гомологичные отделы характерны для мышц нижней конечности - мышцы пояса нижней конечности (мышцы таза), мышцы бедра, голени и стопы.

По форме мышцы могут быть простыми и сложными. К простым мышцам относят длинные, короткие и широкие. Сложными считают многоглавые (двуглавые, трехглавые, четырехглавые), многосухожильные, двубрюшные мышцы. Сложными являются также мышцы определенной геометрической формы: круглые, квадратные, дельтовидные, трапециевидные, ромбовидные и т. д.

По функции различают мышцы-сгибатели и разгибатели; мышцы приводящие и отводящие; вращающие (ротаторы); сфинктеры (суживатели) и дилятаторы (расширители). Вращающие мышцы в

зависимости от направления движения подразделяют на пронаторы и супинаторы (вращающие внутрь и наружу). Также предусматривается подразделение их на синергисты и антагонисты. Синергисты - это мышцы, выполняющие одинаковую функцию и при этом усиливающие друг друга. Антагонисты - это мышцы, выполняющие противоположные функции, т.е. производящие противоположные друг другу движения.

По расположению - поверхностные и глубокие; наружные и внутренние; медиальные и латеральные.

По направлению мышечных волокон - с параллельным, косым, круговым и поперечным ходом мышечных волокон.

Строение мышц. Скелетная мышца как орган включает в себя собственно мышечную и сухожильную части, систему соединительнотканных оболочек, собственные сосуды и нервы. Средняя, утолщенная часть мышцы называется брюшком. На обоих концах мышцы в большинстве случаев находятся сухожилия, с помощью которых она прикрепляется к костям. Структурно-функциональной единицей собственно мышечной части является поперечнополосатое мышечное волокно .

В процессе мышечного сокращения актиновые нити втягиваются в промежутки между миозиновыми, изменяют свою конфигурацию, сцепляются друг с другом. Обеспечение энергией этих процессов происходит за счет расщепления в митохондриях молекул АТФ.

Функциональная единица мышцы - мион - совокупность поперечнополосатых мышечных волокон, иннервируемых одним двигательным нервным волокном. Вспомогательным аппаратом скелетных мышц являются фасции, фиброзные и костно-фиброзные каналы, синовиальные влагалища, синовиальные сумки, мышечные блоки и сесамовидные кости. Фасции представляют собой соединительнотканные оболочки, ограничивающие подкожную жировую клетчатку, покрывающие мышцы и некоторые внутренние органы.

Структурно-функциональной единицей скелетной мышцы является симпласт или мышечное волокно - огромная клетка, имеющая форму протяженного цилиндра с заостренными краями (под наименованием симпласт, мышечное волокно, мышечная клетка следует понимать один и тот же объект).

Длина мышечной клетки чаще всего соответствует длине целой мышцы и достигает 14 см, а диаметр равен нескольким сотым долям миллиметра. скелетный мышца строение развитие

Мышечное волокно, как и любая клетка, окружено оболочкой - сарколемой. Снаружи отдельные мышечные волокна окружены рыхлой соединительной тканью, которая содержит кровеносные и лимфатические сосуды, а так же нервные волокна.

Группы мышечных волокон, образуют пучки, которые, в свою очередь, объединяются в целую мышцу, помещенную в плотный чехол соединительной ткани переходящей на концах мышцы в сухожилия, крепящиеся к кости (рис.1).

Рис. 1.

Усилие, вызываемое сокращением длины мышечного волокна, передается через сухожилия костям скелета и приводит их в движение.

Управление сократительной активностью мышцы осуществляется с помощью большого числа мотонейронов (рис. 2) - нервных клеток, тела которых лежат в спинном мозге, а длинные ответвления - аксоны в составе двигательного нерва подходят к мышце. Войдя в мышцу, аксон разветвляется на множество веточек, каждая из которых подведена к отдельному волокну.

Рис. 2.

Таким образом, один мотонейрон иннервирует целую группу волокон (так называемая нейромоторная единица), которая работает как единое целое.

Мышца состоит из множества нервно моторных единиц и способна работать не всей своей массой, а частями, что позволяет регулировать силу и скорость сокращения.

Для понимания механизма сокращения мышцы необходимо рассмотреть внутреннее строение мышечного волокна, которое, как вы уже поняли, сильно отличается от обычной клетки. Начнем с того, что мышечное волокно многоядерно. Связано это с особенностями формирования волокна при развитии плода. Симпласты (мышечные волокна) образуются на этапе эмбрионального развития организма из клеток предшественников - миобластов.

Миобласты (неоформленные мышечные клетки) интенсивно делятся, сливаются и образуют мышечные трубочки с центральным расположением ядер. Затем в мышечных трубочках начинается синтез миофибрилл (сократительных структур клетки см. ниже), и завершается формирование волокна миграцией ядер на периферию. Ядра мышечного волокна к этому времени уже теряют способность к делению, и за ними остается только функция генерации информации для синтеза белка.

Но не все миобласты идут по пути слияния, часть из них обособляется в виде клеток-сателлитов, располагающихся на поверхности мышечного волокна, а именно в сарколеме, между плазмолемой и базальной мембраной - составными частями сарколемы. Клетки-сателлиты, в отличие от мышечных волокон, не утрачивают способность к делению на протяжении всей жизни, что обеспечивает увеличение мышечной массы волокон и их обновление. Восстановление мышечных волокон при повреждении мышцы возможно благодаря клеткам-сателлитам. При гибели волокна, скрывающиеся в его оболочке, клетки-сателиты активизируются, делятся и преобразуются в миобласты.

Миобласты сливаются друг с другом и образуют новые мышечные волокна, в которых затем начинается сборка миофибрилл. То есть при регенерации полностью повторяются события эмбрионального (внутриутробного) развития мышцы.

Помимо многоядерности отличительной чертой мышечного волокна является наличие в цитоплазме (в мышечном волокне ее принято называть саркоплазмой) тонких волоконец - миофибрилл (рис.1), расположенных вдоль клетки и уложенных параллельно друг другу. Число миофибрилл в волокне достигает двух тысяч.

Миофибриллы являются сократительными элементами клетки и обладают способностью уменьшать свою длину при поступлении нервного импульса, стягивая тем самым мышечное волокно. Под микроскопом видно, что миофибрилла имеет поперечную исчерченность - чередующиеся темные и светлые полосы.

При сокращении миофибриллы светлые участки уменьшают свою длину и при полном сокращении исчезают вовсе. Для объяснения механизма сокращения миофибриллы около пятидесяти лет назад Хью Хаксли была разработана модель скользящих нитей, затем она нашла подтверждение в экспериментах и сейчас является общепринятой.

К основным функциональным свойствам мышечной ткани относятся возбудимость, сократимость, растяжимость, эластичность и пластичность.

Возбудимость - способность мышечной ткани приходить в состояние возбуждения при действии тех или иных раздражителей. В обычных условиях происходит электрическое возбуждение мышцы, вызываемое разрядом мотонейронов в области концевых пластинок. Возникающий под влиянием медиатора потенциал концевой пластинки (ПКП), достигнув порогового уровня (около 30 мВ), вызывает генерацию потенциала действия, распространяющегося в обе стороны мышечного волокна.

Возбудимость мышечных волокон ниже возбудимости нервных волокон, иннервирующих мышцы, хотя критический уровень деполяризации мембран в обоих случаях одинаков. Это объясняется тем, что потенциал покоя мышечных волокон выше (около 90 мВ) потенциала покоя нервных волокон (70 мВ). Следовательно, для возникновения потенциала действия в мышечном волокне необходимо деполяризовать мембрану на большую величину, чем в нервном волокне.

Способность мышцы реагировать на раздражение ее двигательного мотонейрона, т.е. на импульсы, приходящие к ней по нерву, обозначается как непрямая возбудимость мышцы. Однако возбудимостью обладает и само мышечное волокно. Это доказывается раздражением участков мышцы, где отсутствуют окончания двигательного нерва.

Можно исключить влияние нервных элементов на мышцу, подвергнув ее отравлению некоторыми ядами (например, кураре). В этом случае возбуждение с нерва на мышцу не передается, но нерв и мышца сами по себе продолжают функционировать, т.е. мышца продолжает реагировать на непосредственно наносимое на нее раздражение. Таким образом, опыты подобного рода с несомненностью устанавливают наличие в мышечном волокне так называемой прямой возбудимости, т.е. способности мышечных волокон реагировать и на раздражение, действующее непосредственно и на них, а не через нервные волокна.

И прямая и непрямая возбудимость мышцы обусловлена функцией мембраны мышечного волокна. Возбуждение в мышцах проводится изолированно, т.е. не переходит с одного мышечного волокна на другое. Скорость распространения возбуждения в белых и красных волокнах скелетных мышц различна: в белых волокнах она равна 12 - 15, в красных - 3 - 4 м/с.

В мышцах имеется пассивный упругий компонент, который включает сухожилия, соединительную ткань, покрывающую мышечные волокна, их пучки и мышцу в целом, а также упругие образования боковых поперечных мостиков миозиновой нити. Поэтому скелетная мышца - упругое образование. Упругостью обладают активные сократительные и пассивные компоненты мышцы, которые и обеспечивают растяжимость, эластичность и пластичность мышц.

Растяжимость - свойство мышцы удлиняться под влиянием силы тяжести (нагрузки). Чем больше нагрузка, тем больше растяжимость мышцы. Растяжимость зависит и от вида мышечных волокон. Красные волокна растягиваются больше, чем белые, мышцы с параллельными волокнами удлиняются больше, чем перистые. Даже в условиях покоя мышцы всегда несколько растянуты, поэтому они упруго напряжены (находятся в состоянии мышечного тонуса).

Эластичность - свойство деформированного тела возвращаться к первоначальному своему состоянию после удаления силы, вызвавшей деформацию. Это свойство изучается при растяжении мышцы грузом. После удаления груза, мышца не всегда достигает первоначальной длины, особенно при длительном растяжении или под действием большого груза. Это связано с тем, что мышца теряет свойство совершенной упругости.

Пластичность - (греч. Plastikos - годный для лепки, податливый) свойство тела деформироваться под действием механических нагрузок, сохранять приданную или длину или вообще форму после прекращения действия внешней деформирующей силы. Чем длительнее действует большая внешняя сила, тем сильнее пластические изменения.

Пластичность мышц связана и с остаточным укорочением мышц после длительного тетанического сокращения, или контрактуры. Красные волокна, которые удерживают тело в определенном положении, обладают большей пластичностью, чем белые.

При прямом или непрямом раздражении мышца укорачивается или же развивает напряжение в продольном направлении. Это изменение формы или напряжения мышцы носит название мышечного сокращения, следовательно, сократимость - это специфическая деятельность мышечной ткани при ее возбуждении.

Для изучения свойств мышц в учебных целях и в эксперименте в качестве объекта обычно используют нервно-мышечный препарат лягушки, а в качестве раздражителя - электрический ток. Запись сокращений мышцы на приборе миографе при прямом или непрямом раздражении называется миографией. Скорость и сила ответной реакции скелетной мышцы на раздражение зависит не только от параметров раздражителя, но и от типа мышечных волокон. Сократимость и возбудимость мышц разного вида различна.

По скорости сокращения различают быстрые и медленные мышечные волокна. В быстрых волокнах обычно лучше развит саркоплазматический ретикулум, они слабее снабжены кровеносными сосудами, имеют более крупные и длинные волокна, их расслабление после сокращения происходит в 50 - 100 раз быстрее, чем медленных волокон. Организм для выполнения статической работы (например, поддержание позы) использует главным образом медленные, тонические красные мышцы, а для скоростных движений - быстрые белые мышцы.

Различают различные режимы сокращения мышц, которые определяются частотой и силой поступающих импульсов возбуждения.

На прямые и непрямые раздражения частотой не более 6 - 8 Гц мышца, состоящая из медленных двигательных единиц, отвечает одиночными сокращениями. Сокращение наступает не сразу после нанесения раздражения, а через определенный промежуток времени, называемый латентным периодом. Его величина составляет для икроножной мышцы лягушки 0,01 с. Фаза укорочения длится 0,04 с, фаза расслабления - 0,05 с.

Начало сокращения соответствует восходящей фазе потенциала действия, когда он достигает пороговой величины (примерно 40 мВ). У млекопитающих одиночное сокращение скелетных мышц длится 0,04 - 0,1 с, но оно неодинаково в различных мышцах у одного и того же животного. В красных волокнах мышц оно значительно больше, чем в белых. Если на мышцу действуют два быстро следующих друг за другом раздражения (период между импульсами не более 100 мс), мышечные волокна расслабляются не полностью и каждое последующее сокращение как бы наслаивается на предыдущее. Происходит суммация сокращений, которая может быть полной, когда оба сокращения сливаются, образуя одну вершину, или неполной, в зависимости от частоты раздражений. В обоих случаях сокращение имеет большую амплитуду, чем максимальное сокращение при одиночном раздражении.

При воздействии на мышцу ритмических раздражений высокой частоты наступает сильное и длительное сокращение мышцы, которое называется тетаническим сокращением или тетанусом. Этот термин впервые применил Э. Вебер в 1821 году.

Тетанус может быть зубчатым (при частоте раздражений 20 - 40 Гц) или сплошным, гладким (при частоте 50 Гц и выше). Амплитуда тетанического сокращения в 2 - 4 раза выше амплитуды одиночного сокращения при той же силе раздражения.

Гладкий тетанус возникает тогда, когда очередной импульс раздражения действует на мышцу до начала фазы расслабления. При очень большой частоте раздражений каждое очередное раздражение будет попадать на фазу абсолютной рефрактерности и мышца вообще не будет сокращаться. Высота мышечного сокращения при тетанусе зависит от ритма раздражения, а также от возбудимости и лабильности, которые изменяются в процессе сокращения мышцы. Тетанус наиболее высокий при оптимальном ритме, когда каждый последующий импульс действует на мышцу в фазу экзальтации, вызванной предыдущим импульсом. В этом случае создаются наилучшие условия (оптимум силы и частоты раздражения, оптимум ритма) для работы мышцы.

При тетанических сокращениях мышечные волокна утомляются больше, чем при одиночных сокращениях. Поэтому даже в пределах одной мышцы происходит периодическая смена частоты импульсации (вплоть до полного исчезновения) в разных двигательных единицах.

Импульсы с мотонейронов в условиях покоя участвуют в поддержании мышечного тонуса.

Под тонусом понимают состояние естественного постоянного напряжения мышц при невысоких энергетических затратах. В поддержании тонуса участвуют проприорецепторы мышц (мышечные веретена) и центральная нервная система.

Осуществление тонуса скелетных мышц обусловлено функцией медленных двигательных единиц красных волокон мышц. Тонус скелетных мышц связан с поступлением редких нервных импульсов к мышце, в результате чего мышечные волокна возбуждаются не одновременно, а попеременно. У домашних животных существуют специализированные рефлекторные дуги, одни из которых обеспечивают тетанические сокращения, а другие мышечный тонус. Тонус скелетных мышц играет важную роль в поддержании определенного положения тела в пространстве и деятельности двигательного аппарата.

При сближении актиновых и миозиновых фибрилл вследствие замыкания поперечных мостиков в мышечном волокне развивается напряжение (активная механическая тяга). В зависимости от условий, в которых происходит сокращение мышц, развивающееся напряжение реализуется по-разному. Различают два основных типа мышечных сокращений - изотонический и изометрический. Когда мышца при раздражении сокращается, не поднимая никакого груза, происходит укорочение мышечных волокон, но их напряжение не меняется и равно нулю, такое сокращение называют изотоническим (греч. isos - равный, tonos - напряжение). В эксперименте изотоническое сокращение получают при электрическом (тетаническом) раздражении изолированной мышцы, отягащенной небольшим грузом. Укорочение мышцы происходит при постоянном напряжении, равном внешней нагрузки.

Изометрическое (греч. isos - равный, meros - мера) - это сокращение, при котором длина волокон не уменьшается, но их напряжение возрастает (сокращение при неизменной длине). В этом случае сократительный компонент укорачивается за счет растяжения пассивного упругого компонента, который может увеличивать свою длину на 2 - 6 % от длины покоя.

С молекулярной точки зрения напряжение при изотоническом сокращении обеспечивается замыканием и размыканием поперечных мостиков. При этом скорость сокращения зависит от числа замкнутых мостиков, образуемых в единицу времени (чем их меньше, тем больше скорость и соответственно меньше сила сокращения).

При изометрическом же сокращении напряжение в мышечных волокнах создается за счет повторного прикрепления поперечных мостиков на одних и тех же фиксированных участках актиновых нитей.

В естественных условиях деятельности мышц практически не встречается чисто изотоническое или чисто изометрическое сокращение.

Смешанный тип сокращения мышц, при котором изменяются длина и напряжение, называется ауксотоническим. При совершении животным сложных двигательных актов все работающие мышцы сокращаются ауксотонически - с преобладанием либо изотонического, либо изометрического типа сокращения.

Мышцы - одна из основных составляющих тела. Они основаны на ткани, волокна которой сокращаются под воздействием нервных импульсов, что позволяет телу двигаться и удерживаться в окружающей среде.

Мышцы располагаются в каждой части нашего тела. И даже если мы не знаем об их существовании, они все равно есть. Достаточно, например, первый раз сходить в тренажерный зал или позаниматься аэробикой - на следующий день у вас начнут болеть даже те мышцы, о наличии которых вы и не догадывались.

Они отвечают не только за движение. В состоянии покоя мышцы тоже требуют энергии, чтобы поддерживать себя в тонусе. Это необходимо для того, чтобы в любой момент определенная смогла ответить на нервный импульс соответствующим движением, а не тратила время на подготовку.

Чтобы понять, как устроены мышцы, предлагаем вспомнить основы, повторить классификацию и заглянуть в клеточное Также мы узнаем о болезнях, которые могут ухудшить их работу, и о том, как укрепить скелетную мускулатуру.

Общие понятия

По своему наполнению и происходящим реакциям мышечные волокна делятся на:

  • поперечно-полосатые;
  • гладкие.

Скелетные мышцы - продолговатые трубчатые структуры, количество ядер в одной клетке которых может доходить до нескольких сотен. Состоят они из мышечной ткани, которая прикреплена к различным частям костного скелета. Сокращения поперечно-полосатых мышц способствуют движениям человека.

Разновидности форм

Чем различаются мышцы? Фото, представленные в нашей статье, помогут нам в этом разобраться.

Скелетные мышцы являются одной из главных составляющих опорно-двигательной системы. Они позволяют двигаться и сохранять равновесие, а также задействованы в процессе дыхания, голосообразования и других функциях.

В организме человека насчитывается более 600 мышц. В процентном соотношении их общая масса составляет 40% от общей массы тела. Мышцы классифицируются по форме и строению:

  • толстые веретенообразные;
  • тонкие пластинчатые.

Классификация упрощает изучение

Деление скелетных мышц на группы осуществляется в зависимости от места нахождения и значения их в деятельности различных органов тела. Основные группы:

Мышцы головы и шеи:

  • мимические - задействуются при улыбке, общении и создании различных гримас, обеспечивая при этом движение составляющих частей лица;
  • жевательные - способствуют смене положения челюстно-лицевого отдела;
  • произвольные мышцы внутренних органов головы (мягкого неба, языка, глаз, среднего уха).

Группы скелетных мышц шейного отдела:

  • поверхностные - способствуют наклонным и вращательным движениям головы;
  • средние - создают нижнюю стенку ротовой полости и способствуют движению вниз челюсти, и гортанных хрящей;
  • глубокие осуществляют наклоны и повороты головы, создают поднятие первого и второго ребер.

Мышцы, фото которых вы видите здесь, отвечают за туловище и делятся на мышечные пучки следующих отделов:

  • грудной - приводит в действие верхнюю часть торса и руки, а также способствует изменению положения ребер при дыхании;
  • отдел живота - дает движение крови по венам, осуществляет изменения положения грудной клетки при дыхании, воздействует на функционирование кишечного тракта, способствует сгибанию туловища;
  • спинной - создает двигательную систему верхних конечностей.

Мышцы конечностей:

  • верхние - состоят из мышечных тканей плечевого пояса и свободной верхней конечности, помогают двигать рукой в плечевой суставной сумке и создают движения запястья и пальцев;
  • нижние - играют основную роль при передвижении человека в пространстве, подразделяются на мышцы тазового пояса и свободную часть.

Строение скелетной мышцы

В своей структуре она имеет огромное количество продолговатой формы диаметром от 10 до 100 мкм, длина их колеблется от 1 до 12 см. Волокна (микрофибриллы) бывают тонкими - актиновые, и толстыми - миозиновые.

Первые состоят из белка, имеющего фибриллярную структуру. Он называется актин. Толстые волокна состоят из различных типов миозина. Отличаются они по времени, которое требуется на разложение молекулы АТФ, что обуславливает разную скорость сокращений.

Миозин в гладких мышечных клетках находится в дисперсном состоянии, хотя имеется большое количество белка, который, в свою очередь, является многозначащим в продолжительном тоническом сокращении.

Строение скелетной мышцы похоже на сплетенный из волокон канат или многожильный провод. Сверху ее окружает тонкий чехол из соединительной ткани, называемый эпимизиум. От его внутренней поверхности вглубь мышцы отходят более тонкие разветвления соединительной ткани, создающие перегородки. В них «завернуты» отдельные пучки мышечной ткани, которые содержат до 100 фибрилл в каждом. От них еще глубже отходят более узкие ответвления.

Сквозь все слои в скелетные мышцы проникают кровеносная и нервная системы. Артериальная вена проходит вдоль перимизиума - это соединительная ткань, покрывающая пучки мышечных волокон. Артериальные и венозные капилляры располагаются рядом.

Процесс развития

Скелетные мышцы развиваются из мезодермы. Со стороны нервного желобка образуются сомиты. По истечении времени в них выделяются миотомы. Их клетки, приобретая форму веретена, эволюционируют в миобласты, которые делятся. Некоторые из них прогрессируют, а другие остаются без изменений и образуют миосателлитоциты.

Незначительная часть миобластов, благодаря соприкосновению полюсов, создает контакт между собой, далее в контактной зоне плазмалеммы распадаются. Благодаря слиянию клеток создаются симпласты. К ним переселяются недифференцированные молодые мышечные клетки, находящиеся в одном окружении с миосимпластом базальной мембраны.

Функции скелетных мышц

Эта мускулатура является основой опорно-двигательного аппарата. Если она сильна, тело проще поддерживать в нужном положении, а вероятность появления сутулости или сколиоза сводится к минимуму. О плюсах занятий спортом знают все, поэтому рассмотрим роль, которую играет в этом мускулатура.

Сократительная ткань скелетных мышц выполняет в организме человека множество различных функций, которые нужны для правильного расположения тела и взаимодействия его отдельных частей друг с другом.

Мышцы выполняют следующие функции:

  • создают подвижность тела;
  • берегут тепловую энергию, созданную внутри тела;
  • способствуют перемещению и вертикальному удержанию в пространстве;
  • содействуют сокращению дыхательных путей и помогают при глотании;
  • формируют мимику;
  • способствуют выработке тепла.

Постоянная поддержка

Когда мышечная ткань находится в покое, в ней всегда остается незначительное напряжение, называемое мышечным тонусом. Оно образуется из-за незначительных импульсных частот, которые поступают в мышцы из спинного мозга. Их действие обуславливается сигналами, проникающими из головы к спинным мотонейронам. Тонус мышц также зависит от их общего состояния:

  • растяжения;
  • уровня наполняемости мышечных футляров;
  • обогащения кровью;
  • общего водного и солевого баланса.

Человек обладает способностью регулировать уровень нагрузки мышц. В результате длительных физических упражнений либо сильного эмоционального и нервного перенапряжения тонус мышц непроизвольно увеличивается.

Сокращения скелетных мышц и их разновидности

Эта функция является основной. Но даже она, при кажущейся простоте, может делиться на несколько видов.

Виды сократительных мышц:

  • изотонические - способность мышечной ткани укорачиваться без изменений мышечных волокон;
  • изометрические - при реакции волокно сокращается, но его длина остается прежней;
  • ауксотонические - процесс сокращения мышечной ткани, где длина и напряжение мышц подвергнута изменениям.

Рассмотрим этот процесс более подробно

Сначала мозг посылает через систему нейронов импульс, которых доходит до мотонейрона, примыкающего к мышечному пучку. Далее эфферентный нейрон иннервируется из синоптического пузырька, и выделяется нейромедиатор. Он соединяется с рецепторами на сарколемме мышечного волокна и открывает натриевый канал, который приводит к деполяризации мембраны, вызывающей При достаточном количестве нейромедиатор стимулирует выработку ионов кальция. Затем он соединяется с тропонином и стимулирует его сокращение. Тот, в свою очередь, оттягивает тропомеазин, позволяя актину соединиться с миозином.

Дальше начинается процесс скольжения актинового филамента относительно миозинового, вследствие чего происходит сокращение скелетных мышц. Разобраться в процессе сжатия поперечно-полосатых мышечных пучков поможет схематическое изображение.

Принцип работы скелетных мышц

Взаимодействие большого количества мышечных пучков способствует различным движениям туловища.

Работа скелетных мышц может происходить такими способами:

  • мышцы-синергисты работают в одном направлении;
  • мышцы-антагонисты способствуют выполнению противоположных движений для осуществления напряжения.

Антагонистическое действие мышц является одним из главных факторов в деятельности опорно-двигательного аппарата. При осуществлении какого-либо действия в работу включаются не только мышечные волокна, которые совершают его, но и их антагонисты. Они способствуют противодействию и придают движению конкретность и грациозность.

Поперечно-полосатая скелетная мышца при воздействии на сустав совершает сложную работу. Ее характер определяется расположением оси сустава и относительным положением мышцы.

Некоторые функции скелетных мышц являются недостаточно освещенными, и зачастую о них не говорят. Например, некоторые из пучков выступают рычагом для работы костей скелета.

Работа мышц на клеточном уровне

Действие скелетной мускулатуры осуществляется за счет двух белков: актина и миозина. Эти составляющие обладают способностью передвигаться относительно друг друга.

Для осуществления работоспособности мышечной ткани необходим расход энергии, заключенной в химических связях органических соединений. Распад и окисление таких веществ происходят в мышцах. Здесь обязательно присутствует воздух, и выделяется энергия, 33% из всего этого расходуется на работоспособность мышечной ткани, а 67% передается другим тканям и тратится на поддержание постоянной температуры тела.

Болезни мускулатуры скелета

В большинстве случаев отклонения от нормы при функционировании мышц обусловлены патологическим состоянием ответственных отделов нервной системы.

Наиболее распространенные патологии скелетных мышц:

  • Мышечные судороги - нарушение электролитного баланса во внеклеточной жидкости, окружающей мышечные и нервные волокна, а также изменения осмотического давления в ней, особенно его повышение.
  • Гипокальциемическая тетания - непроизвольные тетанические сокращения скелетных мышц, наблюдаемые при падении внеклеточной концентрации Са2+ примерно до 40% от нормального уровня.
  • характеризуется прогрессирующей дегенерацией волокон скелетных мышц и миокарда, а также мышечной нетрудоспособностью, которая может привести к летальному исходу из-за дыхательной либо сердечной недостаточности.
  • Миастения - хроническое аутоиммунное заболевание, при котором в организме образуются антитела к никотиновому ACh-рецептору.

Релаксация и восстановление скелетных мышц

Правильное питание, образ жизни и регулярные тренировки помогут вам стать обладателем здоровых и красивых скелетных мышц. Необязательно заниматься и наращивать мышечную массу. Достаточно регулярных кардиотренировок и занятий йогой.

Не стоит забывать про обязательный прием необходимых витаминов и минералов, а также регулярные посещения саун и бань с вениками, которые позволяют обогатить кислородом мышечную ткань и кровеносные сосуды.

Систематические расслабляющие массажи повысят эластичность и репродуктивность мышечных пучков. Также положительное воздействие на структуру и функционирование скелетных мышц оказывает посещение криосауны.

Ключевую роль в осуществлении движения как основополагающего свойства живого организма играют мышцы. У человека мышцы составляют от 40% до 50% массы тела (Одноралов Н.И.,1965; Бегун П.И., Шукейло Ю.А.,2000; Финандо Д., Финандо С.,2001; Lockart R.D. и соавт.,1969). Мышечная система человека имеет три важнейшие функции (Финандо Д., Финандо С.,2001; Иваничев Г.А., Старосельцева Н.Г,2002):

  • первая функция - поддержание тела и внутренних органов;
  • вторая функция - движения тела в целом, его отдельных частей и внутренних органов;
  • третья функция - метаболическая.

Все мышцы человеческого организма имеют общие основные свойства , которые имеют важное значение для функционирования мышечной системы и дополняют друг друга:

1. возбудимость - способность воспринимать нервный импульс и отвечать на него;

2. сократимость - способность укорочения при получении соответствующего стимула;

3. растяжимость - способность удлиняться под воздействием внешней силы;

4. эластичность - способность возвращаться к нормальной форме после сокращения или растяжения.

Мышечная система человека представлена мышцами трех следующих типов:

1. скелетные мышцы;

2. висцеральные мышцы;

3. мышца сердца.

Главным объектом данного учебного пособия являются скелетные мышцы, связанные с движениями позвоночника и конечностей. Они предназначены для выполнения статических и динамических задач человеческого организма. Для статики они должны отвечать следующим требованиям :

1. противостоять силам гравитации с минимальной затратой энергии, обеспечивая силовой баланс между частями опорно-двигательного аппарата;

2. обеспечивать постоянство внутреннего эндоритма составляющих элементов опорно-двигательного аппарата.

Для динамики скелетные мышцы человека должны выполнять следующие функции:

  • совершать движения различными регионами позвоночника и конечностей в определенной последовательности в виде перемещения тела или его частей адекватно цели, в соответствующем объеме;
  • ограничивать распространение этого движения на соседние регионы, обеспечивать однонаправленность выполнения движения.

Скелетные мышцы - это поперечно-полосатые мышцы Общее число скелетных мышц в теле человека - более 600 (Бегун П.И., Шукейло Ю.А,2000). Каждая скелетная мышца является единым органом, обладающим сложной структурной организацией (Хабиров ФА, Хабиров Р.А.,1995; Петров К Б.,1998; Бегун П.И., Шукейло Ю А,2000; Иваничев Г.А, Старосельцева Н.Г.,2002). Всякое мышечное волокно является многоядерной цилиндрической клеткой, окруженной мембраной - сарколеммой. Мышечные клетки содержат смещенные к периферии ядра и миофибриллы.

Поперечные мембраны разделяют каждую миофибриллу на саркомеры - структурные единицы миофибрилл, обладающие способностью сокращаться. Каждая миофибрилла представляет собой цепь, составленную из филаментов. Различают толстые филаменты - темные, анизотропные, состоящие из миозина, и тонкие миофиламенты - белые, изотропные, состоящие из актина. Белки актин и миозин составляют актиномиозиновый комплекс, который обеспечивает под влиянием аденозинтрифосфорной кислоты мышечное сокращение. Каждое мышечное волокно окружает соединительно-тканная оболочка - эндомизиум, группу волокон - перимизиум, всю мышцу - эпимизиум.

Скелетные мышцы крепятся к костям посредством соединительной части мышцы - сухожилия. К вспомогательному аппарату мышц относятся фасции, синовиальные сумки, влагалища сухожилий, сесамовидные кости. Фасции - это фиброзные оболочки, покрывающие мышцы и их отдельные группы. Синовиальные сумки, содержащие синовиальную жидкость, являются внесуставными полостями, предохраняющими мышцу от повреждения, уменьшающими трение. Влагалища сухожилий предназначены для защиты сухожилий мышц от тесного прилежания к костям, что облегчает работу мышц. В толще некоторых мышц имеются сесамовидные кости, улучшающие работу мышц. Самая большая сесамовидная кость - надколенник, расположена в сухожилии четырехглавой мышцы бедра.

В поперечно-полосатой мышечной ткани выделяют три типа волокон (Сапрыкин В.П., Турбин Д.А.,1997, Макарова И Н., Епифанов В.А, 2002):

1 тип - красные, медленные;

2 тип - быстрые:

А - промежуточные, красные,

В - белые.

Мышца человека содержит и белые, и красные волокна, но в разных соотношениях. Медленные красные волокна 1 типа обладают хорошо развитой капиллярной сетью, большим количеством митохондрий и высокой активностью окислительных ферментов, что определяет их существенную аэробную выносливость при выполнении работы продолжительное время (Иваничев Г.А., Старосельцева Н.Г,2002). Быстрые красные волокна 2 типа А занимают промежуточное положение между красными медленными волокнами и белыми быстрыми волокнами. Отличительной особенностью промежуточных красных волокон, относящихся к быстрым, является их способность использовать энергию при гликолизе как по аэробному, так и по анаэробному циклам Кребса.

Быстрые красные волокна являются мало утомляемыми мышечными волокнами. Мышечные волокна белые содержат большое количество миофибрилл, благодаря которому развивается большая сила сокращения. Они относятся к быстрым волокнам 2 типа В. Быстрые мышечные волокна содержат больше гликолитических ферментов, меньше митохондрий и миоглобина, имеют незначительную сеть капилляров. Аэробная выносливость этих волокон невелика. Они легко и быстро утомляются.

Скелетные мышцы человека состоят из экстрафузальных мышечных волокон, специализируемых на сократительной функции, и интрафузальных мышечных волокон, представляющих нервно-мышечное веретено (Хабиров Ф.А., Хабиров Р.А.,1995).

Сложный аппарат обеспечения движений включает в себя афферентную и эфферентную части (Карлов В.А.,1999; Ходос X.-Б.Г.,2001).

Красноярова Н.А.

Анатомо-физиологические особенности скелетных мышц и тесты для их исследования



  • Разделы сайта