Секреты яншен 10 простых упражнений торрент. Простые упражнения для красоты и здоровья. Упражнения со стулом

Наиболее эффективный способ получения фуллеренов основан на термическом разложении графита. При умеренном нагревании графита разрывается связь между отдельными слоями графита, но не происходит разложения испаряемого материала на отдельные атомы. При этом испаряемый слой состоит из отдельных фрагментов, представляющих собой комбинацию шестиугольников. Из этих фрагментов и происходит построение молекулы С60 и других фуллеренов. Для разложения графита при получении фуллеренов используются резистивный и высокочастотный нагрев графитового электрода, сжигание углеводородов, лазерное облучение поверхности графита, испарение графита сфокусированным солнечным лучом. Эти процессы проводятся в буферном газе, в качестве которого обычно используется гелий. Чаще всего для получения фуллеренов применятся дуговой разряд с графитовыми электродами в гелиевой атмосфере. Основная роль гелия связана с охлаждением фрагментов, которые имеют высокую степень колебательного возбуждения, что препятствует их объединению в стабильные структуры. Оптимальное давление гелия находится в диапазоне 50-100 Торр.

Основа метода проста: между двумя графитовыми электродами зажигается электрическая дуга, в которой испаряется анод. На стенках реактора осаждается сажа, содержащая от 1 до 40 % (в зависимости от геометрических и технологических параметров) фуллеренов. Для экстракции фуллеренов из фуллеренсодержащей сажи, сепарации и очистки используются жидкостная экстракция и колоночная хроматография. На первой стадии сажа обрабатывается неполярным растворителем (толуол, ксилол, сероуглерод). Эффективность экстракции обеспечивается применением аппарата Сокслета или обработкой ультразвуком. Полученный раствор фуллеренов отделяется от осадка фильтрованием и центрифугированием, растворитель отгоняют или испаряют. Твердый осадок содержит смесь фуллеренов, в различной степени сольватированных растворителем. Разделение фуллеренов на отдельные соединения проводят методами колоночной жидкостной хроматографии или жидкостной хроматографии высокого давления. Полное удаление остатка растворителя из твердого образца фуллерена осуществляется путем выдерживания при температуре 150-250 °С в условиях динамического вакуума в течение нескольких часов. Дальнейшее повышение степени чистоты достигается при сублимации очищенных образцов

8. Перспективы практического использования фуллеренов и фуллеритов

Открытие фуллеренов уже привело к созданию новых разделов физики твердого тела и химии (стереохимии). Активно исследуется биологическая активность фуллеренов и их производных. Показано, что представители этого класса способны ингибировать различные ферменты, вызывать специфическое расщепление молекул ДНК, способствовать переносу электронов через биологические мембраны, активно участвовать в различных окислительно-восстановительных процессах в организме. Начаты работы по изучению метаболизма фуллеренов, особое внимание уделяется противовирусным свойствам. Показано, в частности, что некоторые производные фуллеренов способны ингибировать протеазу вируса СПИДа. Широко обсуждается идея создания противораковых медицинских препаратов на основе водорастворимых эндоэдральных соединений фуллеренов с радиоактивными изотопами. Но здесь мы коснемся в основном перспектив применения фуллереновых материалов в технике и электронике.

Возможность получения сверхтвердых материалов и алмазов. Большие надежды возлагаются на попытки использовать фулле-рен, имеющий частичную sp^3-гибридизацию, как исходное сырье, замещающее графит при синтезе алмазов, пригодных для технического использования. Японские исследователи, изучавшие воздействие давления на фуллерен в диапазоне 8- 53 ГПа, показали, что переход фуллерен-алмаз начинается при давлении 16 ГПа и температуре 380 К, что значительно ниже, чем

для перехода графит- алмаз. Была показана возможность получения

крупных (до 600-800 мкм) алмазов при температуре 1000 °С и давлениях до 2 ГПа. Выход больших алмазов при этом достигал 33 вес. %. Линии рамановского рассеяния при частоте 1331 см^-1 имели ширину 2 см^-1 что указывает на высокое качество полученных алмазов. Активно исследуется также возможность получения сверхтвердых полимеризованных давлением фуллеритовых фаз.

Фуллерены как прекурсоры для роста алмазных пленок и карбида кремния. Пленки широкозонных полупроводников, таких как алмаз и карбид кремния, перспективны для использования в высокотемпературной, высокоскоростной электронике и оптоэлектронике, включающей ультрафиолетовый диапазон. Стоимость таких приборов зависит от развития химических методов осаждения (CVD) широкозонных пленок и совместимости этих методов со стандартной кремниевой технологией. Основная проблема в выращивании алмазных пленок - это направить реакцию предпочтительно по пути образования фазы sp ^3, а не sp ^2. Представляется эффективным использование фуллеренов в двух направлениях: повышение скорости формирования алмазных центров зародышеобразования на подложке и использование в качестве подходящих «строительных блоков» для выращивания алмазов в газовой фазе. Показано, что в микроволновом разряде происходит фрагментация С60 на С2, которые являются подходящим материалам для роста алмазных кристаллов. «MER Corporation» получила алмазные пленки высокого качества со скоростью роста 0.6 мкм/ч, используя фуллерены как прекурсоры роста и зародышеобразования. Авторы предсказывают, что такая высокая скорость роста значительно снизит стоимость CVD-алмазов. Значительным преимуществом является и то, что фуллерены облегчают процессы согласования параметров решетки при гетероэпитаксии, что позволяет использовать в качестве подложек ИК-материалы.

Ныне существующие процессы получения карбида кремния требуют использования температур до 1500 °С, что плохо совместимо со стандартной кремниевой технологией. Но, используя фуллерены, карбид кремния удается получить путем осаждения пленки С60 на кремниевую подложку с дальнейшим отжигом при температуре не выше 800 - 900 °С со скоростью роста 0.01 нм/с на Si-подложке.

Фуллерены как материал для литографии. Благодаря способности полимеризоваться под действием лазерного или электронного луча и образовывать при этом нерастворимую в органических растворителях фазу перспективно их применение в качестве резиста для субмикронной литографии. Фуллереновые пленки при этом выдерживают значительный нагрев, не загрязняют подложку, допускают сухое проявление.

Фуллерены как новые материалы для нелинейной оптики. Фуллеренсодержащие материалы (растворы, полимеры, жидкие сильно нелинейных оптических свойств перспективны для применения в качестве оптических ограничителей (ослабителей) интенсивного лазерного излучения; фоторефрактивных сред для записи динамических голограмм; частотных преобразователей; устройств фазового сопряжения.

Наиболее изученной областью является создание оптических ограничителей мощности на основе растворов и твердых растворов С60. Эффект нелинейного ограничения пропускания начинается примерно с 0.2 - 0.5 Дж/см^2, уровень насыщенного оптического пропускания соответствует 0.1 - 0.12 Дж/см 2 . При увеличении концентрации в растворе уровень ограничения плотности энергии снижается. Например, при длине пути в образце 10 мм (коллимированный пучок) и концентрациях раствора С60 в толуоле 1*10^-4, 1.65*10^-4 и 3.3*10^-4 М насыщенное пропускание оптического ограничителя оказывалось равным 320, 165 и 45 мДж/см 2 соответственно. Показано, что на длине волны 532 нм при различной длительности импульса т (500 фс, 5 пс, 10 не) нелинейно-оптическое ограничение проявляется при плотности энергии 2, 9 и 60 мДж/см^2. При больших плотностях вводимой энергии (более 20 Дж/см^2) дополнительно к эффекту нелинейного насыщенного поглощения с возбужденного уровня наблюдается дефокусировка пучка в образце, связанная с нелинейным поглощением, повышением температуры образца и изменением показателя преломления в области прохождения пучка. Для высших фуллеренов граница спектров поглощения сдвигается в область больших длин волн, что позволяет получить оптическое ограничение на л = 1.064 мкм.

Для создания твердотельного оптического ограничителя существенной является возможность введения фуллеренов в твердотельную матрицу при сохранении молекулы как целого и образовании гомогенного твердого раствора. Необходим также подбор матрицы, обладающей высокой лучевой стойкостью, хорошей прозрачностью и высоким оптическим качеством. В качестве твердотельных матриц применяются полимеры и стеклообразные материалы. Сообщается об успешном приготовлении твердого раствора С60 в SiO 2 на основе использования золь-гель-технологии. Образцы имели оптическое ограничение на уровне 2-3 мДж/см^2 и порог разрушения более 1 Дж/сv^2. Описан также оптический ограничитель на полистирольной матрице и показано, что в этом случае эффект оптического ограничения в 5 раз лучше, чем для С60 в растворе. При введении фуллеренов в лазерные фосфатные стекла показано, что фуллерены С60, и С70 в стеклах не разрушаются и механическая прочность допированных фуллеренами стекол оказывается выше, чем чистых.

Интересным применением нелинейно-оптического ограничения мощности излучения является использование фуллеренов в резонаторе лазеров для подавления пичкового режима при самосинхронизации мод. Высокая спепень нелинейности среды с фуллеренами может быть использована в качестве бистабильного элемента для сжатия импульса в наносекундной области длительностей.

Наличие в электронной структуре фуллеренов пи -электронных систем приводит, как известно, к большой величине нелинейной восприимчивости, что предполагает возможность создания эффективных генераторов третьей оптической гармоники. Наличие ненулевых компонент тензора нелинейной восприимчивости х (3) является необходимым условием для осуществления процесса генерации третьей гармоники, но для его практического использования с эффективностью, составляющей десятки процентов, необходимо наличие фазового синхронизма в среде. Эффективная генерация

может быть получена в слоистых структурах с квазисинхронизмом взаимодействующих волн. Слои, содержащие фуллерен, должны иметь толщину, равную когерентной длине взаимодействия, а разделяющие их слои с практически нулевой кубичной восприимчивостью - толщину, обеспечивающую сдвиг фазы на пи между излучением основной частоты и третьей гармоники.

Фуллерены как новые полупроводниковые и наноконструкционные материалы. Фуллериты как полупроводники с запрещенной зоной порядка 2 эВ можно использовать для создания полевого транзистора, фотовольтаических приборов, солнечных батарей, и примеры такого использования есть. Однако они вряд ли могут соперничать по параметрам с обычными приборами с развитой технологией на основе Si или GaAs. Гораздо более перспективным является использование фуллереновой молекулы как готового наноразмерного объекта для создания приборов и устройств наноэлектроники на новых физических принципах.

Молекулу фуллерена, например, можно размещать на поверхности подложки заданным образом, используя сканирующий туннельный (СТМ) или атомный силовой (АСМ) микроскоп, и использовать это как способ записи информации. Для считывания информации используется сканирование поверхности тем же зондом. При этом 1 бит информации - это наличие или отсутствие молекулы диаметром 0.7 нм, что позволяет достичь рекордной плотности записи информации. Такие эксперименты проводятся на фирме «Bell». Интересны для перспективных устройств памяти и эндоэдральные комплексы редкоземельных элементов, таких как тербий, гадолиний, диспрозий, обладающих большими магнитными моментами. Фуллерен, внутри которого находится такой атом, должен обладать свойствами магнитного диполя, ориентацией которого можно управлять внешним магнитным полем. Эти комплексы (в виде субмонослойной пленки) могут служить основой магнитной запоминающей среды с плотностью записи до 10^12 бит/см^2 (для сравнения оптические диски позволяют достичь поверхностной плотности записи 10^8 бит/ см^2).

Рисунок 12 . Принципиальная схема одномолекулярного транзистора на молекуле С60

Были разработаны физические принципы создания аналога транзистора на одной молекуле фуллерена, который может служить усилителем наноамперного диапазона (рис. 12 ). Два точечных наноконтакта расположены на расстоянии порядка 1-5 нм по одну сторону молекулы С60. Один из электродов является истоком, другой играет роль стока. Третий электрод (сетка) представляет собой маленький пьезоэлектрический кристалл и подводится на ван-дер-ваальсово расстояние по другую сторону молекулы. Входной сигнал подается на пьезоэлемент (острие), деформирующий молекулу, расположенную между электродами - истоком и стоком, и модулирует проводимость интрамолекулярного перехода. Прозрачность молекулярного канала токопротекания зависит от степени размытия волновых функций металла в области фуллереновой молекулы. Простая модель этого транзисторного эффекта - это туннельный барьер, высота которого модулируется независимо от его ширины, т. е. молекула С60 используется как природный туннельный барьер. Предполагаемые преимущества такого элемента - малые размеры и очень короткое время пролета электронов в туннельном режиме по сравнению с баллистическим случаем, следовательно более высокое быстродействие активного элемента. Рассматривается возможность интеграции, т. е. создания более чем одного активного элемента на молекулу С60.

Углеродные наночастицы и нанотрубки

Вслед за открытием фуллеренов С60 и С70 при исследовании продуктов, получаемых при сгорании графита в электрической дуге или мощном лазерном луче, были обнаружены частицы, состоящие из атомов углерода, имеющие правильную форму и размеры от десятков до сотен нанометров и поэтому получившие название кроме фуллеренов еще и наночастиц.

Возникает вопрос, почему так долго не могли открыть фуллерены, получающиеся из такого распространенного материала, как графит? Существуют две основные причины: во-первых, ковалентная связь атомов углерода очень прочная: чтобы ее разорвать, необходимы температуры выше 4000°С; во-вторых, для их обнаружения требуется очень сложная аппаратура - просвечивающие электронные микроскопы с высоким разрешением. Как теперь известно, наночастицы могут иметь самые причудливые формы. Были представлены различные углеродные образования в виде известных форм. С практической точки зрения для наноэлектроники, которая приходит сейчас на смену микроэлектронике, наибольший интерес представляют нанотрубы. Эти углеродные образования были открыты в 1991 году японским ученым С. Иджима. Нанотрубы представляют собой конечные графитовые плоскости, свернутые в виде цилиндра, они могут быть с открытыми концами или с закрытыми. Эти образования интересны и с чисто научной точки зрения, как модель одномерных структур. Действительно, в настоящее время обнаружены однослойные нанотрубы диаметром 9 А (0,9 нм). На боковой поверхности атомы углерода, как и в графитовой плоскости, располагаются в узлах шестиугольников, но в чашках, которые закрывают цилиндры с торцов, могут существовать и пятиугольники и треугольники. Чаще всего нанотрубы формируются в виде коаксиальных цилиндров.

Основной трудностью при исследовании свойств нанотрубных образований является то, что в настоящее время их не удается получить в макроскопических количествах так, чтобы аксиальные оси труб были сонаправлены. Как уже отмечалось, нанотрубы малого диаметра служат прекрасной моделью для исследований особенностей одномерных структур. Можно ожидать, что нанотрубы, подобно графиту, хорошо проводят электрический ток и, возможно, являются сверхпроводниками. Исследования в этих направлениях - дело ближайшего будущего.

Фуллеренами в наиболее общем значении этого понятия можно назвать экспериментально полученные и гипотетические молекулы, состоящие исключительно из атомов углерода и имеющие форму выпуклых многогранников. Атомы углерода расположены в их вершинах, а C-C связи пролегают вдоль рёбер .

Фуллерен - это молекулярная форма углерода . Распространено определение, которое гласит, что фуллерены , находяшиеся в твёрдом состоянии, принято называть фуллеритами . Кристаллическая структура фуллерита представляет собой периодическую решётку молекул фуллерена, причём в кристаллическом фуллерите молекулы фуллеренов образуют ГЦК-решетку.

Фуллерен с начала девяностых годов представляет интерес для астрономии, физики, биологии, химии, геологии и других наук. Фуллерену приписывают фантастические медицинские свойства: например, фуллерен якобы уже начали использовать в косметике в качестве омолаживающего средства в косметологии. С помощью фуллерена собираются бороться с раком, ВИЧ и другими грозными заболеваниями. В то же время новизна этих данных, их малоизученность и специфика современного информационного пространства пока не позволяет доверять на сто процентов подобным сведениям о фуллерене.

ИЦМ(www.сайт)

Распространена сильно упрощённая точка зрения, что до открытия фуллерена существовали две полиморфные модификации углерода - графит и алмаз , а после 1990 года к ним добавилась ещё одна аллотропная форма углерода . На самом деле это не так, потому что формы существования углерода удивительно многообразны (см. статью ).

История открытия фуллеренов

Коллектив авторов под руководством Л.Н. Сидорова обобщил в монографии "Фуллерены" большое количество трудов на эту тему, хотя далеко не все: к моменту выхода книги общее количество посвящённых фуллеренам публикаций достигало примерно 15 тысяч. По мнению авторов, открытие фуллеренов - новой формы существования углерода - одного из самых распространённых элементов на нашей планете - признано одним из важнейших открытий в науке XX столетия. Несмотря на давно известную уникальную способность атомов углерода связываться в сложные разветвлённые и объёмные молекулярные структуры, составляющую основу всей органической химии, возможность образования только из одного углерода стабильных каркасных молекул всё равно оказалось неожиданной. По данным экспериментальное подтверждение тому, что молекулы подобного типа из 60 и более атомов могут возникать в ходе естественно протекающих в природе процессов, получено в 1985 г., но задолго до этого уже предполагали стабильность молекул с замкнутой углеродной сферой.

Обнаружение фуллеренов связано напрямую с исследованием процессов сублимации и конденсации углерода.

Новый этап в изучении фуллеренов наступил в 1990 году, когда был разработан метод получения новых соединений в граммовых количествах и описан способ выделения фуллеренов в чистом виде . После этого были установлены важнейшие структурные и физико-химические характеристики фуллерена С 60 . Изомер С60 (бакминстерфуллерен) - это наиболее легко образующееся соединение среди известных фуллеренов. Название своё фуллерен C60 получил в честь футуриста-архитектора Ричарда Бакминстера Фуллера, создавшего сооружения, куполообразный каркас которых состоял из пентагонов и гексагонов. Одновременно с этим в процессе исследования появилась необходимость в обобщающем названии фуллерены для объёмных структур с замкнутой поверхностью (углеродный каркас), благодаря их многообразию.

Стоит отметить также, что в честь Бакминстера Фуллера названа целая линейка углеродных материалов: фуллерен с60 (бакминстер фуллерен) также называют бакибол (Бакминстеру Фуллеру не нравилось имя "Бакминстер" и он предпочитал сокращённое имя "Баки"). Кроме того с этой же приставкой иногда называют: углеродные нанотрубки - бакитьюбы, фуллерены яйцевидной формы - buckyegg (buckyball egg) и т.п.

ИЦМ(www.сайт)

Свойства фуллеренов. Фуллерит

Свойства фуллеренов недостаточно изучены в силу объективных причин: относительно небольшое количество лабораторий имеет возможность изучать эти свойства. Зато в периодической и научно-популярной печати столько внимания отведено фуллеренам и их свойствам... Зачастую непроверенная информация о чудодейственных свойствах фуллеренов распространяется с поразительной скоростью и в огромных масштабах, в итоге слабый голос опровержений остаётся неуслышанным. Например, заявление одной группы учёных о том, что фуллерены присутствуют в шунгите, было проверено неоднократно, но подтверждения не нашло (см. обсуждение к ). Тем не менее шунгит сегодня считается "природным нанотехнологичным фуллеренсодержащим материалом" - утверждение, которое пока, на мой взгляд, больше похоже на маркетинговый ход.

Отдельные исследователи заявляют о таком настораживающем свойстве фуллеренов, как токсичность .

Как правило, когда говорят о свойствах фуллеренов имеют в виду их кристаллическую форму - фуллериты.

Существенное отличие кристаллов фуллеренов от молекулярных кристаллов многих других органических веществ в том, что у них не удаётся наблюдать жидкую фазу . Возможно, это связано с тем, что температура 1200 K перехода в жидкое состояние, которая приписывается фуллериту С 60 , уже превышает то её значение, при котором наступает заметная деструкция углеродного каркаса самих молекул фуллерена .

Согласно данным , к свойствам фуллеренов относится аномально высокоя стабильность, о которой свидетельствуют результаты исследований процессов с участием фуллеренов. В частности, автор отмечает, что кристаллический фуллерен существует как стабильное вещество вплоть до температур 1000 – 1200 К, что объясняется его кинетической устойчивостью. Правда это касается стабильности молекулы фуллерена С60 в инертной атмосфере аргона , а в присутствии кислорода наблюдается значительное окисление уже при 500 К с образованием CO и CO 2 .

Комплексному исследованию электрофизических и термодинамических свойств фуллеритов С60 и С70 в условиях экстремального ударного нагружения посвящена работа .

В любом случае при обсуждении свойств фуллеренов необходимо конкретизировать, какое соединение имеется в виду - С20, C60, С70 или другое, естественно, свойства у этих фуллеренов будут совершенно разные.

В настоящее время фуллерены С60, С70 и фуллеренсодержащие продукты производятся и предлагаются на реализацию различными зарубежными и отечественными предприятиями, поэтому купить фуллерены и заняться изучением свойств фуллеренов теоретически имеет возможность любой желающий. Фуллерены С60 и С70 предлагаются по ценам от 15$ до 210$ за грамм, и дороже, в зависимости от вида, степени чистоты, количества и других факторов. Производство и продажа фуллеренов »

Фуллерены в чугунах и сталях

Если предположить существование фуллеренов и фуллереновых структур в железо-углеродистых сплавах , то они должны существенно влиять на физико-механические свойства сталей и чугунов, участвуя в структурных и фазовых превращениях.

ИЦМ(www.сайт)

Механизмам кристаллизации железо-углеродистых сплавов давно уделяется очень пристальное внимание со стороны исследователей этих процессов. В статье рассматриваются возможные механизмы образования шаровидного графита в высокопрочном чугуне и особенности его строения как раз с учётом фуллереновой природы железоуглеродистых сплавов . Автор пишет, что "с открытием фуллеренов и структур на основе фуллеренов в ряде работ предпринимаются попытки объяснения механизма образования шаровидного графита на основе этих структур".

Работа рассматривает достижения в области химии фуллеренов и обобщает "новые представления о структуре железоуглеродистых расплавов". Автор утверждает, что молекулярная форма углерода – фуллерены С60 - идентифицирована им в железо-углеродистых сплавах, выплавленных методами классической металлургии, а также выявляет три возможных механизма появления фуллеренов в структуре сталей и чугунов :

  • переход фуллеренов в расплав из фуллеренсодержащей шихты в ходе металлургических процессов получения сплавов;
  • образование фуллеренов при первичной кристаллизации;
  • в результате структурных и фазовых превращений, протекающих при термических воздействиях.

    В своё время, 5 лет назад, мы выбрали фуллерен и гексагон в качестве логотипа сайта www.сайт, как символ последних достижений в области исследования железо-углеродистых расплавов, как символ новых разработок и открытий, связанных с модифицированием Fe-C расплава - неотъемлемым этапом современного литейного производства и малой металлургии.

  • Лит.:

    1. Сидоров Л.Н., Юровская М.А. и др. Фуллерены: Учебное пособие. М.: Издательство "Экзамен", 2005. - 688 с. (Серия "Учебное пособие для вузов") УДК 544(075.8) ББК 24.2я73 ISBN 5-472-00294-Х [ Аннотация ]
    2. Левицкий М.М., Леменовский Д.А. Фуллерен // Любопытные факты из истории химии [Электронный ресурс], 2005-2012. - Режим доступа: http://www.xenoid.ruu, свободный. - Загл. с экрана.
    3. Давыдов С.В. Кристаллизация шаровидного графита в расплаве высокопрочного чугуна // М.: Заготовительные производства в машиностроении, 2008, №3. – с. 3-8.
    4. Дунаев А., Шапорев А., под рук. Авдеева А.А. Богатое семейство углеродных материалов // Нанотехнологическое сообщество Нанометр [Электронный ресурс], 2008 - Режим доступа: http://www.nanometer.ru, свободный. - Загл. с экрана.
    5. Закирничная М.М. Образование фуллеренов в углеродистых сталях и чугунах при кристаллизации и термических воздействиях: Дис... докт. тех. наук; 05.02.01. - Уфа: УГНТУ. - 2001.
    6. Елецкий А.В., Смирнов В.М. Фуллерены // УФН, 1993. - №2. - С.33-58.
    7. Авдонин В.В. Электрофизические и термодинамические свойства фуллеритов C60 и C70 при высоких давлениях ударного сжатия: Автореф. дис... канд. тех. наук; 01.04.17. - Черноголовка: Институт проблем химической физики РАН. - 2008.
    8. Золотухин И.В. Фуллерит - новая форма углерода // Химия. - 1996.
    9. Палии Н.А. Фуллерен. Серебряный юбилей // Нанотехнологическое сообщество Нанометр [Электронный ресурс], 2010. - Режим доступа: http://www.nanometer.ru, свободный. - Загл. с экрана.
    10. Годовский Д.А. Образование фуллеренов при кристаллизации чугунов: Автореф. дис... канд. тех. наук; 05.02.01. - УФА. - 2000.
    11. A. Isacovic. Distinct Cytotoxic Mechanisms of Pristine versus Hydroxylated Fullerene / A. Isacovic, Z.Markovic, B.Todorovic, N.Nikolic, S. Vranjes-Djuric, M. Mirkovic, M. Dramicanin, L. Harhaji, N. Raicevic, Z. Nikolic, V. Trajkovic // Toxicological Sciences 91(1), 173–183 (2006)
    12. Борщевский А.Я. Фуллерены / Борщевский А.Я., Иоффе И.Н., Сидоров Л.Н., Троянов С.И., Юровская М.А. // Нанотехнологическое сообщество Нанометр [Электронный ресурс], 2007. - Режим доступа: http://www.nanometer.ru, свободный. - Загл. с экрана.

    Фуллере́н , бакибо́л , или букибо́л - молекулярное соединение, принадлежащее классу аллотропных форм углерода и представляющее собой выпуклые замкнутые многогранники, составленные из чётного числа трёхкоординированных атомов углерода. Своим названием фуллерены обязаны инженеру и архитектору Ричарду Бакминстеру Фуллеру , чьи геодезические конструкции построены по этому принципу. Первоначально данный класс соединений был ограничен лишь структурами, включающими только пяти- и шестиугольные грани. Заметим, что для существования такого замкнутого многогранника, построенного из n вершин, образующих только пяти- и шестиугольные грани, согласно теореме Эйлера для многогранников , утверждающей справедливость равенства | n | − | e | + | f | = 2 {\displaystyle |n|-|e|+|f|=2} (где | n | , | e | {\displaystyle |n|,|e|} и | f | {\displaystyle |f|} соответственно количество вершин, ребер и граней), необходимым условием является наличие ровно 12 пятиугольных граней и n / 2 − 10 {\displaystyle n/2-10} шестиугольных граней. Если в состав молекулы фуллерена, помимо атомов углерода, входят атомы других химических элементов, то, если атомы других химических элементов расположены внутри углеродного каркаса, такие фуллерены называются эндоэдральными , если снаружи - экзоэдральными .

    Энциклопедичный YouTube

      1 / 2

      ✪ Bill Joy: What I"m worried about, what I"m excited about

      ✪ 12 * L"homme qui empoisonna l"Humanité en voulant la sauver

    Субтитры

    Переводчик: Marina Gavrilova Редактор: Ahmet Yükseltürk Какие технологии мы можем реально использовать для сокращения глобальной бедности? То, что я понял, было довольно неожиданно. Мы начали изучать такие вещи, как уровень смертности в двадцатом веке, и как с тех пор положение улучшилось, и всплыли очень интересные и простые вещи. Может показаться, что решающую роль сыграли антибиотики, а не чистая вода, но на самом деле всё наоборот. И очень простые вещи -- готовые технологии, которые легко было найти на ранних ступенях развития интернета -- могли кардинально изменить эту проблему. Но, глядя на более мощные технологии, такие как нанотехнологии и генная инженерия, а также другие возникающие цифровые технологии, я обеспокоился возможными злоупотребленями в этих областях. Задумайтесь, ведь в истории, много лет тому назад, мы имели дело с эксплуатацией человека человеком. Тогда мы придумали десять заповедей: не убий. Это своего рода индивидуальное решение. Наши поселения стали организовываться в города. Население увеличивалось. И, чтобы защитить человека от тиранства толпы, мы придумали такие концепции, как свобода личности. Затем, чтобы иметь дело с большими группами, скажем, на уровне государства, либо в результате договоров о взаимном ненападении, либо в результате ряда конфликтов, мы в конце концов пришли к своеобразному мировому соглашению о сохранении мира. Но на сегодняшний день ситуация изменилась, это то, что люди называют асимметричной ситуацией, когда технологии стали настолько мощны, что они уже выходят за пределы государства. Теперь уже не государства, а отдельные индивиидумы имеют потенциальный доступ к оружию массового уничтожения. И это является следствием того факта, что эти новые технологии, как правило, цифровые. Мы все видели геномные последовательности. При желании, кто угодно может скачать последовательности генов патогенных микроорганизмов из Интернета. Если хотите, я недавно прочёл в одном научном журнале, что штамм гриппа 1918 г. слишком опасен для пересылки. И если кому-то нужно использовать его в лабораторных исследованиях, предлагается просто реконструировать его, чтобы не подвергать опасности почту. Такие возможности, бесспорно, существуют. Таким образом, небольшие группы людей, имеющие доступ к такого рода само-воспроизводящимся технологиям, будь то биологические или другие технологии, представляют явную опасность. И опасность в том, что они могут, в сущности, создать пандемию. А у нас нет реального опыта работы с пандемиями, а также, как общество, мы не очень хорошо умеем справляться с незнакомыми вещами. Принятие превентивных мер не в нашей природе. И в этом случае, технология не решает проблему, потому что она только открывает перед людьми больше возможностей. Рассел, Эйнштейн и другие, обсуждая это в гораздо более серьёзной форме, я думаю, ещё в начале двадцатого века, пришли к заключению, что решение должно приниматься не только головой, но и сердцем. Возьмите, к примеру, открытые обсуждения и моральный прогресс. Преимущество, которое дает нам цивилизация, это возможность не использовать силу. Наши права в обществе защищаются в основном посредством законных мер. Чтобы ограничить опасность этих новых вещей, необходимо ограничить доступ отдельных лиц к источникам создания пандемий. Нам также нужны значительные средства обороны, потому что действия сумасшедших людей могут быть непресказуемыми. А самая неприятная вещь -- это то, что сделать что-то плохое гораздо легче, чем разработать защиту во всех возможных ситуациях; поэтому преступник всегда имеет асимметричное преимущество. Вот такие мысли я думал в 1999 и 2000 годах; мои друзья видели, что я находился в подавленном состоянии, и беспокоились за меня. Тогда же я подписал контракт на написание книги, в которой я намеревался изложить свои мрачные мысли, и переехал в гостиничный номер в Нью-Йорке с одной комнатой, полной книг о чуме и о взрывах ядерных бомб в Нью-Йорке; создал атмосферу, одним словом. И я был там 11 сентября, стоял на улице со всеми. Происходило что-то невероятное. Я встал на следующее утро и вышел из города, все уборочные грузовики были припаркованы на Хьюстон-стрит, готовые к разбору завалов. Я шел по середине улицы, до железнодорожной станции; всё, ниже 14-ой улицы, было перекрыто. Это было невероятно, но не для тех, у кого была комната, полная книг. Было удивительно, что это произошло тогда и там, но не удивительно, что это в принципе произошло. Все потом начали об этом писать. Тысячи людей начали писать об этом. И в конце концов я отказался от книги, а затем Крис позвонил мне с предложением выступить на конференции. Я об этом больше не говорю, потому что и без этого происходит достаточно удручающих вещей. Но я согласился прийти и сказать несколько слов по этому поводу. И я бы сказал, что мы не должны отказываться от верховенства закона в борьбе с асимметричными угрозами, что, похоже, делают в настоящее время люди, находящиеся у власти, потому что это равно отказу от цивилизации. И мы не можем бороться с угрозой в такой глупой форме, как мы это делаем, потому что действие в миллион долларов приводит к ущербу на миллиард долларов и к противодействию на триллион долларов, каковое является неэффективным и, почти наверняка усугубляет проблему. Невозможно с чем-то бороться, если затраты находятся в соотношении миллион к одному, а шансы на успех -- один к миллиону. После отказа от книги, около года назад, я имел честь присоединиться к Kleiner Perkins и получил возможность с помощью венчурного капитала работать над инновациями, пытаясь найти такие инновации, которые можно было бы использовать для решения основных проблем. В таких вещах разница в десять раз может в итоге дать выигрыш в тысячу раз. Я был поражен в прошлом году невероятным качеством и импульсом инноваций, которые прошли через мои руки. Временами это было просто захватывающе. Я очень благодарен Google и Wikipedia за то, что я мог понять хотя бы немного из того, о чём говорили приходящие люди. Я бы хотел рассказать вам о трёх областях, которые вселяют в меня особую надежду, касаемо проблем, о которых я писал в статье в журнале "Wired". Первая область -- это образование в целом, а в сущности, это относится к тому, что говорил Николас (Nicholas Negroponte) о 100-долларовых компьютерах. Закон Мура ещё далеко не исчерпан. Наиболее передовые транзисторы на сегодня -- 65 нанометров, и я с удовольствием инвестировал в компании, которые дают мне большую уверенность в том, что закон Мура будет работать вплоть до масштаба примерно 10 нанометров. Ещё уменьшение размеров, скажем, в 6 раз должно улучшить производительность чипов в 100 раз. Таким образом, в практическом плане, если что-то стоит порядка 1000 долларов на сегодняшний день, скажем, лучший персональный компьютер, который можно купить, то его стоимость в 2020 году, я думаю, может быть 10 долларов. Неплохо? Представьте себе, сколько-же будет стоить упомянутый 100-долларовый компьютер в 2020 году в качестве инструмента для обучения. Я думаю, что наша задача -- а я уверен, что это произойдет, разработать такие учебно-методические пособия и сети, которые-бы позволили нам воспользоваться этим устройством. Я убеждён, что мы обладаем невероятно мощными компьютерами, но у нас нет для них хорошего программного обеспечения. И только по прошествии времени, когда появляется более качественное программное обеспечение, вы запускаете его на 10-летней машине и говорите: "Боже, эта машина была способна работать так быстро?" Я помню, когда интерфейс Apple Mac поставили обратно на Apple II. Apple II прекрасно работал с этим интерфейсом, просто в то время мы ещё не знали, как это сделать. Исходя из того, что Закон Мура работал в течении 40 лет, можно предположить, что так оно и будет. Тогда мы знаем, какими будут компьютеры в 2020 году. Это здорово, что у нас есть инициативы для организации образования и просвещения людей по всему миру, потому что это великая сила мира. И мы можем обеспечить каждого в мире 100-долларовым компьютером или 10-долларовым компьютером в течение ближайших 15 лет. Второе направление, на котором я концентрируюсь -- это проблема экологии, потому что она оказывает сильное влияние на весь мир. Скоро Альберт Гор расскажет об этом подробнее. Нам кажется, что существует своего рода тенденция Закона Мура, согласно которой новые материалы являются движущей силой прогресса в области экологии. Перед нами стоит сложная задача, потому что городское население выросло в этом столетии с 2 до 6 миллиардов в очень короткий промежуток времени. Люди перебираются в города. Всем нужна чистая вода, энергия, средства передвижения, и мы хотим развивать города по зеленому пути. Промышленные сектора достаточно эффективны. Мы добились улучшений в области энергетики и эффективности использования ресурсов, но потребительский сектор, особенно в Америке, очень неэффективен. Новые материалы привносят такие невероятные новшества, что есть веские основания надеяться, что они будут достаточно выгодными, чтобы попасть на рынок. Я хочу привести конкретный пример нового материала, который был открыт 15 лет назад. Это углеродные нанотрубки, которые Иидзима открыл в 1991 году, у них просто невероятные свойства. Такие вещи мы обнаруживаем, когда начинаем проектировать на нано уровне. Их сила в том, что это практически самый прочный материал самый устойчивый к растяжению из известных. Они очень, очень жесткие и тянутся очень мало. В двух измерениях, если например из них сделать ткань, то она будет в 30 раз прочнее, чем кевлар. А если сделать трехмерную структуру, например букибол, у него будут невероятные свойства. Если обстрелять его частицами и пробить в нём дыру, он сам себя отремонтирует, быстренько так отремонтирует, в течении фемтосекунд, что не.. Очень быстро. (Смех в зале) Если его осветить, он генерирует электроэнергию. Фото-вспышка может вызвать его возгорание. Если его наэлектризовать, он испускает свет. Через него можно пропустить в тысячу раз больший ток, чем через кусок металла. Из них можно сделать полупроводники как р-, так и n-типа, что означает, что из них можно делать транзисторы. Они проводят тепло по длине, но не поперёк -- тут нельзя говорить о толщине, просто о поперечном направлении -- если поместить их один на другой; это также свойство и углеродного волокна. Если поместить в них частицы, и стрелять -- они действуют как миниатюрные линейные ускорители или электронные пушки. Внутренняя часть нанотрубки настолько мала, -- самая маленькая из них 0,7 нм -- что это в сущности уже квантовый мир. Странное это пространство -- внутри нанотрубки. Итак, мы начинаем понимать, и уже существуют бизнес-планы, вещи, о которых говорит Лиза Рэндел. У меня был один бизнес-план, где я пытался узнать больше о Виттеновских струнах космических измерений, чтобы попытаться понять, что происходит в предлагаемом наноматериале. Так что мы действительно уже на пределе внутри нанотрубки. То есть мы видим, что из этих и других новых материалов можно создавать вещи с различными свойствами -- легкие и прочные -- и применять эти новые материалы для решения экологических проблем. Новые материалы, которые могут создавать воду, новые материалы, которые могут заставить топливные элементы работать лучше, новые материалы, которые катализируют химические реакции, которые уменьшают загрязнение окружающей среды и так далее. Этанол -- новые способы изготовления этанола. Новые способы построения электрического транспорта. Зеленый сон наяву -- потому что это может быть выгодным. И мы вложили -- мы недавно основали новый фонд, мы вложили 100 миллионов долларов в такого рода инвестиции. Мы считаем, что Genentech, Compaq, Lotus, Sun, Netscape, Amazon, и Google ещё появятся в этих областях, потому что это революция в материалах будет двигателем прогресса. Третье направление, над которым мы работаем, и о котором мы только что объявил на прошлой неделе в Нью-Йорке. Мы основали 200-миллионный специальный фонд для разработки биозащиты от пандемий. И, чтобы дать вам представление: последний фонд, основанный Клейнером, оценивается в 400 миллионов долларов, так что это для является очень существенным фондом. Что мы сделали за последние несколько месяцев - несколько месяцев назад мы с Рейем Курцвейлом написали обзорную статью в "Нью-Йорк Таймс" о том, насколько опасна была публикация генома гриппа 1918г. Джон Дерр, Брук и другие обеспокоились этим [неясно], и мы стали изучать, как мир готовился к пандемии. Мы увидели много пробелов. Мы задались вопросом, можно-ли найти такие инновации, которые заполнят эти пробелы? И Брукс сказал мне в перерыве, что он нашел так много вещей, от волнения он не может спать, так много замечательных технологий, что мы просто можем в них закопаться. Мы нуждаемся в них, вы знаете. У нас в резерве есть один антивирусный препарат; говорят, что он по-прежнему работает. Это "Тамифлю". Однако вирус Тамифлю устойчив. Он устойчив к препарату "Тамифлю". Из опыта со СПИДом, мы видим, что хорошо работают коктейли, то есть для вирусной устойчивости нужно несколько препаратов. Нужно глубже это исследовать. Нужны группы, которые могут выяснить, что происходит. Нужна экспресс-диагностика, чтобы мочь выявить штамм гриппа, который только недавно был открыт. Нужно иметь возможность быстро выполнять экспресс-диагностику. Нужны новые антивирусные препараты и коктейли. Нужны новые виды вакцин. Вакцины широкого спектра. Вакцины, которые можно быстро изготовлять. Коктейли, более мощные вакцины. Обычная вакцина работает против 3 возможных штаммов. Мы не знаем, какой именно активизировался. Мы считаем, что если-бы мы могли заполнить эти 10 пробелов, у нас была-бы возможность реально уменьшить риск возникновения пандемии. Обычный сезонный грипп и пандемия находятся в отношении 1:1000 в терминах летальных исходов, ну и, конечно, влияние на экономику огромно. Поэтому мы очень рады, потому что мы думаем, что можем финансировать 10, или, по крайней мере, ускорить 10 проектов и быть свидетелями их выхода на рынок в ближайшие пару лет. Таким образом, если с помощью технологии мы можем помочь в решении проблем в области образования, окружающей среды, в борьбе с пандемиями, то решит-ли это более широкую проблему, которую я обсуждал в журнале "Wired"? Я боюсь, что ответа на самом деле нет, потому что невозможно решить проблему управления технологией с помощью технологии-же. Если оставить неограниченную власть в свободном доступе, то очень небольшое количество людей сможет использовать это в своих целях. Невозможно бороться, когда шансы находятся в соотношении миллион к одному. Что нам нужно, так это более эффективные законы. Например, то, что мы можем сделать, то, что пока не витает в политическом воздухе, но, возможно, со сменой администрации будет -- это использование рынков. Рынки являются очень мощной силой. Например, вместо того, чтобы пытаться регулировать проблемы, что, вероятно, не будет работать, если-бы мы могли внести стоимость катастрофы в затраты на ведение бизнеса, так, чтобы люди, которые работают с бизнесом повышенного риска, могли-бы застраховаться от этого риска. Например, вы можете это использовать, чтобы выйти на рынок с лекарством. Оно не должно будет быть одобрено регулирующими органами; но вам придется убедить страховую компанию, что это безопасно. А если применить понятие страхования в более широком масштабе, вы можете использовать более мощную силу, силу рынка, чтобы обеспечить обратную связь. Как можно обеспечить такое законодательство? Я думаю, что подобное законодательство нужно поддерживать. Нужно провлекать людей к ответственности. Закон требует ответственности. На сегодняшний день ученые, технологи, бизнесмены, инженеры не несут личную ответственность за последствия своих действий. Если что-то делаешь, нужно делать это в согласии с законом. И наконец, я думаю, мы должны сделать - это практически невозможно сказать -- мы должны начать проектировать будущее. Мы не можем выбрать будущее, но мы можем поменять его направление. Наши инвестиции в попытки предотвратить пандемии гриппа влияют на распределение возможных результатов. Мы может быть не в состоянии остановить пандемию, но вероятность того, что она не затронет нас, ниже, если мы концентрируемся на этой проблеме. Таким образом, мы можем конструировать будущее, выбирая то, что мы хотим, чтобы произошло и предотвращая то, что не хотим, и направляя развитие в место с меньшим риском. Вице-президент Гор расскажет о том, как мы могли бы направить траекторию климата в область с низкой вероятностью катастрофы. Но самое главное, что мы должны делать -- это мы должны помочь хорошим ребятам, людям, занятым в обороне, получить преимущество по сравнению с людьми, которые могут использовать ситуацию в своих целях. И то, что мы должны сделать -- это ограничить доступ к определенной информации. Принимая во внимание те ценности, на которых мы выросли, то высокое значение, мы придаём свободе слова, это трудно принять -- всем нам трудно это принять. Особенно трудно это ученым, которые помнят гонения, которым подвергался Галилей, но все же боролся против церкви. Но это цена цивилизации. Ценой за сохранение закона является ограничение доступа к неограниченной власти. Спасибо за внимание. (Аплодисменты)

    История открытия

    Фуллерены в природе

    После получения в лабораторных условиях молекулы углерода были найдены в некоторых образцах шунгитов Северной Карелии в фульгуритах США и Индии , метеоритах и донных отложениях , возраст которых достигает 65 миллионов лет .

    Фуллерены в больших количествах были обнаружены и в космосе : в 2010 году в виде газа , в 2012 году - в твёрдом виде .

    Структурные свойства

    Молекулярное образование углерода в форме усечённый икосаэдр имеет массу 720 а. е. м. В молекулах фуллеренов атомы углерода расположены в вершинах шести- и пятиугольников, из которых составлена поверхность сферы или эллипсоида. Самый симметричный и наиболее полно изученный представитель семейства фуллеренов - фуллерен (C 60), в котором углеродные атомы образуют усечённый икосаэдр , состоящий из 20 шестиугольников и 12 пятиугольников и напоминающий футбольный мяч (как идеальная форма, крайне редко встречающаяся в природе). Так как каждый атом углерода фуллерена С 60 принадлежит одновременно двум шести- и одному пятиугольнику, то все атомы в С 60 эквивалентны, что подтверждается спектром ядерного магнитного резонанса (ЯМР) изотопа 13 С - он содержит всего одну линию. Однако не все связи С-С имеют одинаковую длину. Связь С=С, являющаяся общей стороной для двух шестиугольников, составляет 1,39 , а связь С-С, общая для шести- и пятиугольника, длиннее и равна 1,44 Å . Кроме того, связь первого типа двойная, а второго - одинарная, что существенно для химии фуллерена С 60 . В действительности изучение свойств фуллеренов полученных в больших количествах показывают распределение их объективных свойств (химическая и сорбционная активности) на 4 устойчивых изомера фуллерена , свободно определяемые по различному времени выхода из сорбционной колонки жидкостного хроматографа высокого разрешения. При этом атомная масса всех 4-х изомеров равнозначна - имеет массу 720 а. е. м.

    Следующим по распространённости является фуллерен C 70 , отличающийся от фуллерена C 60 вставкой пояса из 10 атомов углерода в экваториальную область C 60 , в результате чего молекула 34 является вытянутой и напоминает своей формой мяч для игры в регби .

    Так называемые высшие фуллерены, содержащие большее число атомов углерода (до 400), образуются в значительно меньших количествах и часто имеют довольно сложный изомерный состав. Среди наиболее изученных высших фуллеренов можно выделить C n , n =74, 76, 78, 80, 82 и 84.

    Синтез

    Первые фуллерены выделяли из конденсированных паров графита , получаемых при лазерном облучении твёрдых графитовых образцов. Фактически, это были следы вещества. Следующий важный шаг был сделан в 1990 году В. Кретчмером, Лэмбом, Д. Хаффманом и др., разработавшими метод получения граммовых количеств фуллеренов путём сжигания графитовых электродов в электрической дуге в атмосфере гелия при низких давлениях . В процессе эрозии анода на стенках камеры оседала сажа, содержащая некоторое количество фуллеренов. Сажу растворяют в бензоле или толуоле и из полученного раствора выделяют в чистом виде граммовые количества молекул С 60 и С 70 в соотношении 3:1 и примерно 2 % более тяжёлых фуллеренов . Впоследствии удалось подобрать оптимальные параметры испарения электродов (давление, состав атмосферы, ток, диаметр электродов), при которых достигается наибольший выход фуллеренов, составляющий в среднем 3-12 % материала анода, что, в конечном счёте, определяет высокую стоимость фуллеренов.

    На первых порах все попытки экспериментаторов найти более дешёвые и производительные способы получения граммовых количеств фуллеренов (сжигание углеводородов в пламени , химический синтез и др.) к успеху не привели и метод «дуги» долгое время оставался наиболее продуктивным (производительность около 1 г/час) . Впоследствии фирме Mitsubishi удалось наладить промышленное производство фуллеренов методом сжигания углеводородов, но такие фуллерены содержат кислород , и поэтому дуговой метод по-прежнему остаётся единственным подходящим методом получения чистых фуллеренов.

    Механизм образования фуллеренов в дуге до сих пор остаётся неясным, поскольку процессы, идущие в области горения дуги, термодинамически неустойчивы, что сильно усложняет их теоретическое рассмотрение. Неопровержимо удалось установить только то, что фуллерен собирается из отдельных атомов углерода (или фрагментов С 2). Для доказательства в качестве анодного электрода использовался графит 13 С высокой степени очистки, другой электрод был из обычного графита 12 С. После экстракции фуллеренов было показано методом ЯМР , что атомы 12 С и 13 С расположены на поверхности фуллерена хаотично. Это указывает на распад материала графита до отдельных атомов или фрагментов атомного уровня и их последующую сборку в молекулу фуллерена. Данное обстоятельство заставило отказаться от наглядной картины образования фуллеренов в результате сворачивания атомных графитовых слоёв в замкнутые сферы.

    Сравнительно быстрое увеличение общего количества установок для получения фуллеренов и постоянная работа по улучшению методов их очистки привели к существенному снижению стоимости С 60 за последние 17 лет - с 10 тыс. до 10-15 долл. за грамм , что подвело к рубежу их реального промышленного использования.

    К сожалению, несмотря на оптимизацию метода Хаффмана - Кретчмера (ХК), повысить выход фуллеренов более 10-20 % от общей массы сожжённого графита не удаётся. Из-за относительно высокой стоимости начального продукта - графита, этот метод имеет принципиальные ограничения. Многие исследователи полагают, что снизить стоимость фуллеренов, получаемых методом ХК, ниже нескольких долларов за грамм не удастся. Поэтому усилия ряда исследовательских групп направлены на поиск альтернативных методов получения фуллеренов. Наибольших успехов в этой области достигла фирма Мицубиси , которой удалось наладить промышленный выпуск фуллеренов методом сжигания углеводородов в пламени. Стоимость таких фуллеренов составляет около 5 долл./грамм (2005 год), что никак не повлияло на стоимость электродуговых фуллеренов.

    Необходимо отметить, что высокую стоимость фуллеренов определяет не только их низкий выход при сжигании графита, но и сложность выделения, очистки и разделения фуллеренов различных масс из углеродной сажи. Обычный подход состоит в следующем: сажу, полученную при сжигании графита, смешивают с толуолом или другим органическим растворителем (способным эффективно растворять фуллерены), затем смесь фильтруют или отгоняют на центрифуге , а оставшийся раствор выпаривают. После удаления растворителя остается тёмный мелкокристаллический осадок - смесь фуллеренов, называемый обычно фуллеритом. В состав фуллерита входят различные кристаллические образования: мелкие кристаллы из молекул С 60 и С 70 и кристаллы С 60 /С 70 , являются твёрдыми растворами. Кроме того, в фуллерите всегда содержится небольшое количество высших фуллеренов (до 3 %). Разделение смеси фуллеренов на индивидуальные молекулярные фракции производят с помощью жидкостной хроматографии на колонках и жидкостной хроматографии высокого давления (ЖХВД). Последняя используется главным образом для анализа чистоты выделенных фуллеренов, так как аналитическая чувствительность метода ЖХВД очень высока (до 0,01 %). Наконец, последний этап - удаление остатков растворителя из твёрдого образца фуллерена. Оно осуществляется путём выдерживания образца при температуре 150-250 °C в условиях динамического вакуума (около 0,1 торр).

    Физические свойства и прикладное значение

    Фуллериты

    Конденсированные системы, состоящие из молекул фуллеренов, называются фуллеритами . Наиболее изученная система такого рода - кристалл С 60 , менее - система кристаллического С 70 . Исследования кристаллов высших фуллеренов затруднены сложностью их получения.

    Атомы углерода в молекуле фуллерена связаны σ- и π-связями , в то время как химической связи (в обычном смысле этого слова) между отдельными молекулами фуллеренов в кристалле нет. Поэтому в конденсированной системе отдельные молекулы сохраняют свою индивидуальность (что важно при рассмотрении электронной структуры кристалла). Молекулы удерживаются в кристалле силами Ван-дер-Ваальса , определяя в значительной мере макроскопические свойства твёрдого C 60 .

    При комнатных температурах кристалл С 60 имеет гранецентрированную кубическую (ГЦК) решётку с постоянной 1,415 нм, но при понижении температуры происходит фазовый переход первого рода (Т кр ≈260 ) и кристалл С 60 меняет свою структуру на простую кубическую (постоянная решётки 1,411 нм) . При температуре Т > Т кр молекулы С 60 хаотично вращаются вокруг своего центра равновесия, а при её снижении до критической две оси вращения замораживаются. Полное замораживание вращений происходит при 165 К. Кристаллическое строение С 70 при температурах порядка комнатной подробно исследовалось в работе . Как следует из результатов этой работы, кристаллы данного типа имеют объёмноцентрированную (ОЦК) решётку с небольшой примесью гексагональной фазы.

    Нелинейные оптические свойства

    Анализ электронной структуры фуллеренов показывает наличие π-электронных систем, для которых имеются большие величины нелинейной восприимчивости. Фуллерены действительно обладают нелинейными оптическими свойствами. Однако из-за высокой симметрии молекулы С 60 генерация второй гармоники возможна только при внесении асимметрии в систему (например внешним электрическим полем). С практической точки зрения привлекательно высокое быстродействие (~250 пс), определяющее гашение генерации второй гармоники. Кроме того фуллерены С 60 способны генерировать и третью гармонику .

    Другой вероятной областью использования фуллеренов и, в первую очередь, С 60 являются оптические затворы. Экспериментально показана возможность применения этого материала для длины волны 532 нм . Малое время отклика даёт шанс использовать фуллерены в качестве ограничителей лазерного излучения и модуляторов добротности. Однако, по ряду причин фуллеренам трудно конкурировать здесь с традиционными материалами. Высокая стоимость, сложности с диспергированием фуллеренов в стёклах, способность быстро окисляться на воздухе, далеко не рекордные коэффициенты нелинейной восприимчивости, высокий порог ограничения оптического излучения (не пригодный для защиты глаз) создают серьёзные трудности в борьбе с конкурирующими материалами.

    Квантовая механика и фуллерен

    Гидратированный фуллерен (HyFn);(С 60 (H 2 O)n)

    Гидратированный фуллерен С 60 - C 60 HyFn - это прочный, гидрофильный супрамолекулярный комплекс, состоящий из молекулы фуллерена С 60 , заключенной в первую гидратную оболочку, которая содержит 24 молекулы воды: C 60 @(H 2 O) 24 . Гидратная оболочка образуется вследствие донорно-акцепторного взаимодействия неподеленных пар электронов кислорода молекул воды с электрон-акцепторными центрами на поверхности фуллерена. При этом, молекулы воды, ориентированные вблизи поверхности фуллерена связаны между собой объёмной сеткой водородных связей. Размер C 60 HyFn соответствует 1,6-1,8 нм. В настоящее время, максимальная концентрация С 60 , в виде C 60 HyFn, которую удалось создать в воде, эквивалентна 4 мг/мл. [уточните ссылку ] Фотография водного раствора С 60 HyFn с концентрацией С 60 0,22 мг/мл справа.

    Фуллерен в качестве материала для полупроводниковой техники

    Молекулярный кристалл фуллерена является полупроводником с шириной запрещённой зоны ~1.5 эВ и его свойства во многом аналогичны свойствам других полупроводников. Поэтому ряд исследований был связан с вопросами использования фуллеренов в качестве нового материала для традиционных приложений в электронике: диод, транзистор, фотоэлемент и т. п. Здесь их преимуществом по сравнению с традиционным кремнием является малое время фотоотклика (единицы нс). Однако существенным недостатком оказалось влияние кислорода на проводимость плёнок фуллеренов и, следовательно, возникла необходимость в защитных покрытиях. В этом смысле более перспективно использовать молекулу фуллерена в качестве самостоятельного наноразмерного устройства и, в частности, усилительного элемента .

    Фуллерен как фоторезист

    Под действием видимого (> 2 эВ), ультрафиолетового и более коротковолнового излучения фуллерены полимеризуются и в таком виде не растворяются органическими растворителями . В качестве иллюстрации применения фуллеренового фоторезиста можно привести пример получения субмикронного разрешения (≈20 нм) при травлении кремния электронным пучком с использованием маски из полимеризованной плёнки С 60 .

    Фуллереновые добавки для роста алмазных плёнок методом CVD

    Другой интересной возможностью практического применения является использование фуллереновых добавок при росте алмазных плёнок CVD-методом (Chemical Vapor Deposition). Введение фуллеренов в газовую фазу эффективно с двух точек зрения: увеличение скорости образования алмазных ядер на подложке и поставка строительных блоков из газовой фазы на подложку. В качестве строительных блоков выступают фрагменты С 2 , которые оказались подходящим материалом для роста алмазной плёнки. Экспериментально показано, что скорость роста алмазных плёнок достигает 0,6 мкм/ч, что в 5 раз выше, чем без использования фуллеренов. Для реальной конкуренции алмазов с другими полупроводниками в микроэлектронике необходимо разработать метод гетероэпитаксии алмазных плёнок, однако рост монокристаллических плёнок на неалмазных подложках остаётся пока неразрешимой задачей. Один из возможных путей решения этой проблемы - использование буферного слоя фуллеренов между подложкой и плёнкой алмазов. Предпосылкой к исследованиям в этом направлении является хорошая адгезия фуллеренов к большинству материалов. Перечисленные положения особенно актуальны в связи с интенсивными исследованиями алмазов на предмет их использования в микроэлектронике следующего поколения. Высокое быстродействие (высокая насыщенная дрейфовая скорость); максимальная, по сравнению с любыми другими известными материалами, теплопроводность и химическая стойкость делают алмаз перспективным материалом для электроники следующего поколения .

    Сверхпроводящие соединения с С 60

    Молекулярные кристаллы фуллеренов - полупроводники , однако в начале 1991 года было установлено, что легирование твёрдого С 60 небольшим количеством щелочного металла приводит к образованию материала с металлической проводимостью, который при низких температурах переходит в сверхпроводник . Легирование С 60 производят путём обработки кристаллов парами металла при температурах в несколько сотен градусов Цельсия. При этом образуется структура типа X 3 С 60 (Х - атом щелочного металла). Первым интеркалированным металлом оказался калий . Переход соединения К 3 С 60 в сверхпроводящее состояние происходит при температуре 19 К. Это рекордное значение для молекулярных сверхпроводников . Вскоре установили, что сверхпроводимостью обладают многие фуллериты, легированные атомами щелочных металлов в соотношении либо Х 3 С 60 , либо XY 2 С 60 (X,Y - атомы щелочных металлов). Рекордсменом среди высокотемпературных сверхпроводников (ВТСП) указанных типов оказался RbCs 2 С 60 - его Т кр =33 К .

    Влияние малых добавок фуллереновой сажи на антифрикционные и противоизносные свойства ПТФЭ

    Следует отметить, что присутствие фуллерена С 60 в минеральных смазках инициирует на поверхностях контртел образование защитной фуллерено-полимерной плёнки толщиной 100 нм. Образованная плёнка защищает от термической и окислительной деструкции, увеличивает время жизни узлов трения в аварийных ситуациях в 3-8 раз, термостабильность смазок до 400-500 °C и несущую способность узлов трения в 2-3 раза, расширяет рабочий интервал давлений узлов трения в 1,5-2 раза, уменьшает время приработки контртел.

    Другие области применения

    Среди других интересных приложений следует отметить аккумуляторы и электрические батареи, в которых так или иначе используются добавки фуллеренов. Основой этих аккумуляторов являются литиевые катоды , содержащие интеркалированные фуллерены. Фуллерены также могут быть использованы в качестве добавок для получения искусственных алмазов методом высокого давления . При этом выход алмазов увеличивается на ≈30 %.

    Кроме того, фуллерены нашли применение в качестве добавок в интумесцентные (вспучивающиеся) огнезащитные краски. За счёт введения фуллеренов краска под воздействием температуры при пожаре вспучивается, образуется достаточно плотный пенококсовый слой, который в несколько раз увеличивает время нагревания до критической температуры защищаемых конструкций.

    Также фуллерены и их различные химические производные используются в сочетании с полисопряжёнными полупроводящими полимерами для изготовления солнечных элементов.

    Химические свойства

    Фуллерены, несмотря на отсутствие атомов водорода, которые могут быть замещены как в случае обычных ароматических соединений , всё же могут быть функционализированы различными химическими методами. Например, успешно были применены такие реакции для функционализации фуллеренов, как реакция Дильса - Альдера , реакция Прато , реакция Бингеля. Фуллерены также могут быть прогидрированы с образованием продуктов от С 60 Н 2 до С 60 Н 50 .

    Медицинское значение

    Антиоксиданты

    Фуллерены являются мощнейшими антиоксидантами , известными на сегодняшний день. В среднем они превосходят действие всех известных до них антиоксидантов в 100-1000 раз. Предполагается, что именно благодаря этому они способны значительно продлевать среднюю продолжительность жизни крыс и круглых червей . В природном виде содержатся в шунгите и морском воздухе. Предполагается, что фуллерен С 60 , растворённый в оливковом масле, может встраиваться в двухслойные липидные мембраны клеток и митохондрий и действовать как многоразовый антиоксидант

    Фуллерен — молекулярное соединение, принадлежащее к классу аллотропных форм углерода и представляющее собой выпуклые замкнутые многогранники, составленные из чётного числа трёхкоординированных атомов углерода. Уникальная структура фуллеренов обуславливает их уникальные физические и химические свойства.

    Другие формы углерода: графен, карбин, алмаз, фуллерен, углеродные нанотрубки, «вискерсы» .

    Описание и структура фуллерена:

    Фуллерен, бакибол, или букибол - молекулярное соединение, принадлежащее к классу аллотропных форм углерода и представляющее собой выпуклые замкнутые многогранники, составленные из чётного числа трёхкоординированных атомов углерода .

    Фуллерены названы таким образом по имени инженера и архитектора Ричарда Бакминстера Фуллера, который разработал и построил пространственную конструкцию «геодезического купола», представляющую собой полусферу, собранную из тетраэдров. Данная конструкция принесла Фуллеру международное признание и известность. Сегодня по его разработкам разрабатываются и строятся купольные дома . Фуллерен по своей структуре и форме напоминает указанные конструкции Ричарда Бакминстера Фуллера.

    Уникальная структура фуллеренов обуславливает их уникальные физические и химические свойства. В соединении с другими веществами они позволяют получить материалы с принципиально новыми свойствами.

    В молекулах фуллеренов атомы углерода расположены в вершинах шести- и пятиугольников, из которых составлена поверхность сферы или эллипсоида. Самый симметричный и наиболее полно изученный представитель семейства фуллеренов - фуллерен (C 60), в котором углеродные атомы образуют усечённый икосаэдр, состоящий из 20 шестиугольников и 12 пятиугольников и напоминающий футбольный мяч (как идеальная форма, крайне редко встречающаяся в природе).

    Следующим по распространённости является фуллерен C 70 , отличающийся от фуллерена C 60 вставкой пояса из 10 атомов углерода в экваториальную область C 60 , в результате чего молекула фуллерена C 60 является вытянутой и напоминает своей формой мяч для игры в регби.

    Так называемые высшие фуллерены, содержащие большее число атомов углерода (до 400 и более), образуются в значительно меньших количествах и часто имеют довольно сложный изомерный состав. Среди наиболее изученных высших фуллеренов можно выделить C n , где n = 74, 76, 78, 80, 82 и 84.

    Связь между вершинами, ребрами и гранями фуллерена может быть выражена математической формулой согласно теореме Эйлера для многогранников:

    В — Р + Г = 2,

    где В — число вершин выпуклого многогранника, Р — число его рёбер и Г — число граней.

    Необходимым условием существования выпуклого многогранника согласно теореме Эйлера (и соответственно существования фуллерена с определенной структурой и формой) является наличие ровно 12 пятиугольных граней и В/2 — 10 граней.

    Возможность существования фуллерена была предсказана японскими учеными в 1971 году, теоретически обоснование было сделано советскими учеными в 1973 году. Впервые фуллерен был синтезирован в 1985 г. в США.

    Практически весь фуллерен получают искусственным путем. В природе он содержится в очень малых количествах. Он образуются при горении природного газа и разряде молнии, а также содержится в очень малых количествах в шунгитах, фульгуритах, метеоритах и донных отложениях, возраст которых достигает 65 миллионов лет.

    Соединения фуллерена:

    Фуллерен легко вступает в соединения с другими химическими элементами. В настоящее время на основе фуллеренов уже синтезировано более 3 тысяч новых и производных соединений.

    Если в состав молекулы фуллерена, помимо атомов углерода, входят атомы других химических элементов, то, если атомы других химических элементов расположены внутри углеродного каркаса, такие фуллерены называются эндоэдральными, если снаружи - экзоэдральными.

    Преимущества и свойства фуллерена:

    – материалы с применением фуллеренов обладают повышенной прочностью, износостойкостью, термо – и хемостабильностью и уменьшенной истираемостью,

    – механические свойства фуллеренов позволяют использовать их в качестве высокоэффективной антифрикационной твердой смазки. На поверхностях контртел они образуют защитную фуллерено-полимерную плёнку толщиной десятки и сотни нанометров, которая защищает от термической и окислительной деструкции, увеличивает время жизни узлов трения в аварийных ситуациях в 3-8 раз, увеличивает термостабильность смазок до 400-500 °C и несущую способность узлов трения в 2-3 раза, расширяет рабочий интервал давлений узлов трения в 1,5-2 раза, уменьшает время приработки контртел,

    – фуллерены способны полимеризоваться и образовывать тонкие пленки ,

    – резкое снижение прозрачности раствора фуллеренов при превышении интенсивности оптического излучения некоторого критического значения за счет нелинейных оптических свойств,

    – возможность использования фуллеренов в качестве основы для нелинейных оптических затворов, применяемых для защиты оптических устройств от интенсивного оптического облучения,

    – фуллерены имеют способность проявлять свойства антиоксиданта или окислителя. В качестве антиоксидантов они превосходят действие всех известных антиоксидантов в 100 — 1000 раз. Были проведены опыты на крысах, которых кормили фуллеренами в оливковом масле. При этом крысы жили вдвое дольше обычных, и, к тому же, демонстрировали повышенную устойчивость к действию токсических факторов,

    – является полупроводником с шириной запрещённой зоны ~1.5 эВ и его свойства во многом аналогичны свойствам других полупроводников,

    – фуллерены С60, выступая в качестве лиганда, взаимодействуют с щелочными и некоторыми другими металлами. При этом образуются комплексные соединения состава Ме 3 С60, обладающие свойствами сверхпроводников.

    Свойства молекулы фуллерена*:

    * применительно к фуллерену С60.

    Получение фуллеренов:

    Основными способами получения фуллеренов считаются:

    — сжигание графитовых электродов в электрической дуге в атмосфере гелия при низких давлениях,

    – лекарства и фармацевтические препараты,

    – геомодификаторы трения,

    – косметика,

    – в качестве добавки для получения синтетических алмазов методом высокого давления. Выход алмазов увеличивается на 30%,

    Автоматическая система машинного доения коров «Сти...

    Квантовый компьютер

    Электробус с динамической подзарядкой...

    Защищенный ноутбук на базе процессора Эльбрус-1С+...

    Гибкий камень

    Фуллерен С 60

    Фуллерен C 540

    Фуллере́ны , бакибо́лы или букибо́лы - молекулярные соединения, принадлежащие классу аллотропных форм углерода (другие - алмаз , карбин и графит) и представляющие собой выпуклые замкнутые многогранники, составленные из чётного числа трёхкоординированных атомов углерода. Своим названием эти соединения обязаны инженеру и дизайнеру Ричарду Бакминстеру Фуллеру , чьи геодезические конструкции построены по этому принципу. Первоначально данный класс соединений был ограничен лишь структурами, включающими только пяти- и шестиугольные грани. Заметим, что для существования такого замкнутого многогранника, построенного из n вершин, образующих только пяти- и шестиугольные грани, согласно теореме Эйлера для многогранников , утверждающей справедливость равенства | n | − | e | + | f | = 2 (где | n | , | e | и | f | соответственно количество вершин, ребер и граней), необходимым условием является наличие ровно 12 пятиугольных граней и n / 2 − 10 шестиугольных граней. Если в состав молекулы фуллерена помимо атомов углерода входят атомы других химических элементов, то, если атомы других химических элементов расположены внутри углеродного каркаса, такие фуллерены называются эндоэдральными , если снаружи - экзоэдральными.

    История открытия фуллеренов

    Структурные свойства фуллеренов

    В молекулах фуллеренов атомы углерода расположены в вершинах правильных шести- и пятиугольников, из которых составлена поверхность сферы или эллипсоида. Самый симметричный и наиболее полно изученный представитель семейства фуллеренов - фуллерен (C 60), в котором углеродные атомы образуют усечённый икосаэдр, состоящий из 20 шестиугольников и 12 пятиугольников и напоминающий футбольный мяч . Так как каждый атом углерода фуллерена С 60 принадлежит одновременно двум шести- и одному пятиугольнику, то все атомы в С 60 эквивалентны, что подтверждается спектром ядерного магнитного резонанса (ЯМР) изотопа 13 С - он содержит всего одну линию. Однако не все связи С-С имеют одинаковую длину. Связь С=С, являющаяся общей стороной для двух шестиугольников, составляет 1.39 , а связь С-С, общая для шести- и пятиугольника, длиннее и равна 1.44 Å . Кроме того, связь первого типа двойная, а второго - одинарная, что существенно для химии фуллерена С 60 .

    Следующим по распространённости является фуллерен C 70 , отличающийся от фуллерена C 60 вставкой пояса из 10 атомов углерода в экваториальную область C 60 , в результате чего молекула C 70 оказывается вытянутой и напоминает своей формой мяч для игры в регби .

    Так называемые высшие фуллерены, содержащие большее число атомов углерода (до 400), образуются в значительно меньших количествах и часто имеют довольно сложный изомерный состав. Среди наиболее изученных высших фуллеренов можно выделить C n , n =74, 76, 78, 80, 82 и 84.

    Синтез фуллеренов

    Первые фуллерены выделяли из конденсированных паров графита , получаемых при лазерном облучении твёрдых графитовых образцов. Фактически, это были следы вещества. Следующий важный шаг был сделан в 1990 году В. Кретчмером, Лэмбом, Д. Хаффманом и др., разработавшими метод получения граммовых количеств фуллеренов путём сжигания графитовых электродов в электрической дуге в атмосфере гелия при низких давлениях. . В процессе эрозии анода на стенках камеры оседала сажа, содержащая некоторое количество фуллеренов. Впоследствии удалось подобрать оптимальные параметры испарения электродов (давление, состав атмосферы, ток, диаметр электродов), при которых достигается наибольший выход фуллеренов, составляющий в среднем 3-12 % материала анода, что, в конечном счёте, определяет высокую стоимость фуллеренов.

    На первых порах все попытки экспериментаторов найти более дешёвые и производительные способы получения граммовых количеств фуллеренов (сжигание углеводородов в пламени , химический синтез и др.) к успеху не привели и метод «дуги» долгое время оставался наиболее продуктивным (производительность около 1 г/час) . Впоследствии, фирме Mitsubishi удалось наладить промышленное производство фуллеренов методом сжигания углеводородов, но такие фуллерены содержат кислород и поэтому дуговой метод по-прежнему остаётся единственным подходящим методом получения чистых фуллеренов.

    Механизм образования фуллеренов в дуге до сих пор остаётся неясным, поскольку процессы, идущие в области горения дуги, термодинамически неустойчивы, что сильно усложняет их теоретическое рассмотрение. Неопровержимо удалось установить только то, что фуллерен собирается из отдельных атомов углерода (или фрагментов С 2). Для доказательства в качестве анодного электрода использовался графит 13 С высокой степени очистки, другой электрод был из обычного графита 12 С. После экстракции фуллеренов было показано методом ЯМР , что атомы 12 С и 13 С расположены на поверхности фуллерена хаотично. Это указывает на распад материала графита до отдельных атомов или фрагментов атомного уровня и их последующую сборку в молекулу фуллерена. Данное обстоятельство заставило отказаться от наглядной картины образования фуллеренов в результате сворачивания атомных графитовых слоёв в замкнутые сферы.

    Сравнительно быстрое увеличение общего количества установок для получения фуллеренов и постоянная работа по улучшению методов их очистки привели к существенному снижению стоимости С 60 за последние 17 лет - с 10000$ до 10-15$ за грамм , что подвело к рубежу их реального промышленного использования.

    К сожалению, несмотря на оптимизацию метода Хаффмана - Кретчмера (ХК), повысить выход фуллеренов более 10-20 % от общей массы сожжённого графита не удаётся. Если учесть относительно высокую стоимость начального продукта - графита, становится ясно, что этот метод имеет принципиальные ограничения. Многие исследователи полагают, что снизить стоимость фуллеренов, получаемых методом ХК, ниже нескольких долларов за грамм не удастся. Поэтому усилия ряда исследовательских групп направлены на поиск альтернативных методов получения фуллеренов. Наибольших успехов в этой области достигла фирма Мицубиси, которой, как уже говорилось выше, удалось наладить промышленный выпуск фуллеренов методом сжигания углеводородов в пламени. Стоимость таких фуллеренов составляет около 5$/грамм (2005 год), что никак не повлияло на стоимость электродуговых фуллеренов.

    Необходимо отметить, что высокую стоимость фуллеренов определяет не только их низкий выход при сжигании графита, но и сложность выделения, очистки и разделения фуллеренов различных масс из углеродной сажи. Обычный подход состоит в следующем: сажу, полученную при сжигании графита, смешивают с толуолом или другим органическим растворителем (способным эффективно растворять фуллерены), затем смесь фильтруют или отгоняют на центрифуге , а оставшийся раствор выпаривают. После удаления растворителя остается тёмный мелкокристаллический осадок - смесь фуллеренов, называемый обычно фуллеритом. В состав фуллерита входят различные кристаллические образования: мелкие кристаллы из молекул С 60 и С 70 и кристаллы С 60 /С 70 , являются твёрдыми растворами. Кроме того, в фуллерите всегда содержится небольшое количество высших фуллеренов (до 3 %). Разделение смеси фуллеренов на индивидуальные молекулярные фракции производят с помощью жидкостной хроматографии на колонках и жидкостной хроматографии высокого давления (ЖХВД). Последняя используется главным образом для анализа чистоты выделенных фуллеренов, так как аналитическая чувствительность метода ЖХВД очень высока (до 0,01 %). Наконец, последний этап - удаление остатков растворителя из твёрдого образца фуллерена. Оно осуществляется путём выдерживания образца при температуре 150-250 o С в условиях динамического вакуума (около 0.1 торр).

    Физические свойства и прикладное значение фуллеренов

    Фуллериты

    Конденсированные системы, состоящие из молекул фуллеренов, называются фуллеритами . Наиболее изученная система такого рода - кристалл С 60 , менее - система кристаллического С 70 . Исследования кристаллов высших фуллеренов затруднены сложностью их получения. Атомы углерода в молекуле фуллерена связаны σ- и π-связями, в то время как химической связи (в обычном смысле этого слова) между отдельными молекулами фуллеренов в кристалле нет. Поэтому в конденсированной системе отдельные молекулы сохраняют свою индивидуальность (что важно при рассмотрении электронной структуры кристалла). Молекулы удерживаются в кристалле силами Ван-дер-Ваальса , определяя в значительной мере макроскопические свойства твёрдого C 60 .

    При комнатных температурах кристалл С 60 имеет гранецентрированную кубическую (ГЦК) решётку с постоянной 1.415 нм, но при понижении температуры происходит фазовый переход первого рода (Т кр ≈260 К) и кристалл С 60 меняет свою структуру на простую кубическую (постоянная решётки 1.411 нм) . При температуре Т > Т кр молекулы С 60 хаотично вращаются вокруг своего центра равновесия, а при её снижении до критической две оси вращения замораживаются. Полное замораживание вращений происходит при 165 К. Кристаллическое строение С 70 при температурах порядка комнатной подробно исследовалось в работе . Как следует из результатов этой работы, кристаллы данного типа имеют объёмноцентрированную (ОЦК) решётку с небольшой примесью гексагональной фазы.

    Нелинейные оптические свойства фуллеренов

    Анализ электронной структуры фуллеренов показывает наличие π-электронных систем, для которых имеются большие величины нелинейной восприимчивости. Фуллерены действительно обладают нелинейными оптическими свойствами. Однако из-за высокой симметрии молекулы С 60 генерация второй гармоники возможна только при внесении асимметрии в систему (например внешним электрическим полем). С практической точки зрения привлекательно высокое быстродействие (~250 пс), определяющее гашение генерации второй гармоники. Кроме того фуллерены С 60 способны генерировать и третью гармонику .

    Другой вероятной областью использования фуллеренов и, в первую очередь, С 60 являются оптические затворы. Экспериментально показана возможность применения этого материала для длины волны 532 нм . Малое время отклика даёт шанс использовать фуллерены в качестве ограничителей лазерного излучения и модуляторов добротности. Однако, по ряду причин фуллеренам трудно конкурировать здесь с традиционными материалами. Высокая стоимость, сложности с диспергированием фуллеренов в стёклах, способность быстро окисляться на воздухе, далеко не рекордные коэффициенты нелинейной восприимчивости, высокий порог ограничения оптического излучения (не пригодный для защиты глаз) создают серьёзные трудности в борьбе с конкурирующими материалами.

    Квантовая механика и фуллерен

    Гидратированный фуллерен (HyFn);(С 60 @{H 2 O}n)

    Водный раствор C 60 HyFn

    Гидратированный фуллерен С 60 - C 60 HyFn – это прочный, гидрофильный супрамолекулярный комплекс, состоящий из молекулы фуллерена С 60 , заключенной в первую гидратную оболочку, которая содержит 24 молекулы воды: C 60 @(H 2 O) 24 . Гидратная оболочка образуется вследствие донорно-акцепторного взаимодействия неподеленных пар электронов кислорода молекул воды с электрон-акцепторными центрами на поверхности фуллерена. При этом, молекулы воды, ориентированные вблизи поверхности фуллерена связаны между собой объёмной сеткой водородных связей. Размер C 60 HyFn соответствует 1,6-1,8 нм. В настоящее время, максимальная концентрация С 60 , в виде C 60 HyFn, которую удалось создать в воде, эквивалентна 4 мг/мл. Фотография водного раствора С 60 HyFn с концентрацией С 60 0,22 мг/мл справа.

    Фуллерен в качестве материала для полупроводниковой техники

    Молекулярный кристалл фуллерена является полупроводником с шириной запрещённой зоны ~1.5 эВ и его свойства во многом аналогичны свойствам других полупроводников. Поэтому ряд исследований был связан с вопросами использования фуллеренов в качестве нового материала для традиционных приложений в электронике: диод, транзистор, фотоэлемент и т. п. Здесь их преимуществом по сравнению с традиционным кремнием является малое время фотоотклика (единицы нс). Однако существенным недостатком оказалось влияние кислорода на проводимость плёнок фуллеренов и, следовательно, возникла необходимость в защитных покрытиях. В этом смысле более перспективно использовать молекулу фуллерена в качестве самостоятельного наноразмерного устройства и, в частности, усилительного элемента .

    Фуллерен как фоторезист

    Под действием видимого (> 2 эВ), ультрафиолетового и более коротковолнового излучения фуллерены полимеризуются и в таком виде не растворяются органическими растворителями. В качестве иллюстрации применения фуллеренового фоторезиста можно привести пример получения субмикронного разрешения (≈20 нм) при травлении кремния электронным пучком с использованием маски из полимеризованной плёнки С 60 .

    Фуллереновые добавки для роста алмазных плёнок методом CVD

    Другой интересной возможностью практического применения является использование фуллереновых добавок при росте алмазных плёнок CVD-методом (Chemical Vapor Deposition). Введение фуллеренов в газовую фазу эффективно с двух точек зрения: увеличение скорости образования алмазных ядер на подложке и поставка строительных блоков из газовой фазы на подложку. В качестве строительных блоков выступают фрагменты С 2 , которые оказались подходящим материалом для роста алмазной плёнки. Экспериментально показано, что скорость роста алмазных плёнок достигает 0.6 мкм/час, что в 5 раз выше, чем без использования фуллеренов. Для реальной конкуренции алмазов с другими полупроводниками в микроэлектронике необходимо разработать метод гетероэпитаксии алмазных плёнок, однако рост монокристаллических плёнок на неалмазных подложках остаётся пока неразрешимой задачей. Один из возможных путей решения этой проблемы - использование буферного слоя фуллеренов между подложкой и плёнкой алмазов. Предпосылкой к исследованиям в этом направлении является хорошая адгезия фуллеренов к большинству материалов. Перечисленные положения особенно актуальны в связи с интенсивными исследованиями алмазов на предмет их использования в микроэлектронике следующего поколения. Высокое быстродействие (высокая насыщенная дрейфовая скорость); максимальная, по сравнению с любыми другими известными материалами, теплопроводность и химическая стойкость делают алмаз перспективным материалом для электроники следующего поколения .

    Сверхпроводящие соединения с С 60

    Молекулярные кристаллы фуллеренов - полупроводники, однако в начале 1991 г. было установлено, что легирование твёрдого С 60 небольшим количеством щелочного металла приводит к образованию материала с металлической проводимостью, который при низких температурах переходит в сверхпроводник . Легирование С 60 производят путём обработки кристаллов парами металла при температурах в несколько сотен градусов Цельсия. При этом образуется структура типа X 3 С 60 (Х - атом щелочного металла). Первым интеркалированным металлом оказался калий. Переход соединения К 3 С 60 в сверхпроводящее состояние происходит при температуре 19 К. Это рекордное значение для молекулярных сверхпроводников. Вскоре установили, что сверхпроводимостью обладают многие фуллериты, легированные атомами щелочных металлов в соотношении либо Х 3 С 60 , либо XY 2 С 60 (X,Y - атомы щелочных металлов). Рекордсменом среди высокотемпературных сверхпроводников (ВТСП) указанных типов оказался RbCs 2 С 60 - его Т кр =33 К .

    Влияние малых добавок фуллереновой сажи на антифрикционные и противоизносные свойства ПТФЭ

    Следует отметить, что присутствие фуллерена С 60 в минеральных смазках инициирует на поверхностях контртел образование защитной фуллерено-полномерной пленки толщиной - 100 нм. Образованная пленка защищает от термической и окислительной деструкции, увеличивает время жизни узлов трения в аварийных ситуациях в 3-8 раз, термостабильность смазок до 400-500ºС и несущую способность узлов трения в 2-3 раза, расширяет рабочий интервал давлений узлов трения в 1,5-2 раза, уменьшает время приработки контртел.

    Другие области применения фуллеренов

    Среди других интересных приложений следует отметить аккумуляторы и электрические батареи, в которых так или иначе используются добавки фуллеренов. Основой этих аккумуляторов являются литиевые катоды, содержащие интеркалированные фуллерены. Фуллерены также могут быть использованы в качестве добавок для получения искусственных алмазов методом высокого давления. При этом выход алмазов увеличивается на ≈30 %. Фуллерены могут быть также использованы в фармации для создания новых лекарств. Кроме того, фуллерены нашли применение в качестве добавок в интумесцентные (вспучивающиеся) огнезащитные краски. За счёт введения фуллеренов краска под воздействием температуры при пожаре вспучивается, образуется достаточно плотный пенококсовый слой, который в несколько раз увеличивает время нагревания до критической температуры защищаемых конструкций. Также фуллерены и их различные химические производные используются в сочетании с полисопряжёнными полупроводящими полимерами для изготовления солнечных элементов.

    Химические свойства фуллеренов

    Фуллерены, несмотря на отсутствие атомов водорода, которые могут быть замещены как в случае обычных



  • Разделы сайта