Как делать сравнение дробей. Сравнение дробей. Вычитание смешанных чисел. Сложные случаи

Инструкция

Способ сложения.
Нужно записать два строго друг под другом:

549+45у+4у=-7, 45у+4у=549-7, 49у=542, у=542:49, у≈11.
В произвольно выбранное (из системы) уравнение вставить вместо уже найденного «игрека» число 11 и вычислить второе неизвестное:

Х=61+5*11, х=61+55, х=116.
Ответ данной системы уравнений: х=116, у=11.

Графический способ.
Заключается в практическом нахождении координаты точки, в которой прямые, математически записанные в системе уравнений. Следует начертить графики обоих прямых по отдельности в одной системе координат. Общий вид : – у=kх+b. Чтобы построить прямую, достаточно найти координаты двух точек, причем, х выбирается произвольно.
Пусть дана система: 2х – у=4

У=-3х+1.
Строится прямая по первому , для удобства его нужно записать: у=2х-4. Придумать (полегче) значения для икс, подставляя его в уравнение, решив его, найти игрек. Получаются две точки, по которым строится прямая. (см рис.)
х 0 1

у -4 -2
Строится прямая по второму уравнению: у=-3х+1.
Так же построить прямую. (см рис.)

у 1 -5
Найти координаты точки пересечения двух построенных прямых на графике (если прямые не пересекаются, то система уравнений не имеет – так ).

Видео по теме

Полезный совет

Если одну и ту же систему уравнений решить тремя разными способами, ответ получится одинаковый (если решение верно).

Источники:

  • Алгебра 8 класса
  • решить уравнение с двумя неизвестными онлайн
  • Примеры решения систем линейных уравнений с двумя

Система уравнений представляет собой совокупность математических записей, каждая из которых содержит некоторое количество переменных. Существует несколько способов их решения.

Вам понадобится

  • -линейка и карандаш;
  • -калькулятор.

Инструкция

Рассмотрим последовательность решения системы, которая состоит из линейных уравнений имеющих вид: a1x + b1y = c1 и a2x + b2y = c2. Где x и y – неизвестные переменные, а b,c – свободные члены. При применении данного способа каждое системы представляет собой координаты точек , соответствующих каждому уравнению. Для начала в каждом случае выразите одну переменную через другую. Затем задайте переменной х несколько любых значений. Достаточно два. Подставьте в уравнение и найдите y. Постройте систему координат, отметьте на ней полученные точки и проведите через них прямую. Аналогичные расчеты необходимо провести и для других частей системы.

Система имеет единственное решение, если построенные прямые пересекаются и одну общую точку. Она несовместна, если параллельны друг другу. И имеет бесконечно много решений, когда прямые сливаются друг с другом.

Данный способ считается очень наглядным. Главным недостатком то, что вычисленные неизвестные имеют приближенные значения. Более точный результат дают так называемые алгебраические методы.

Любое решение системы уравнений стоит проверить. Для этого подставьте вместо переменных полученные значения. Так же можно найти его решение несколькими методами. Если решение системы верное, то все должны получиться одинаковыми.

Часто встречаются уравнения, в которых одно из слагаемых неизвестно. Чтобы решить уравнение, нужно запомнить и проделать с данными числами определенный набор действий.

Вам понадобится

  • - лист бумаги;
  • - ручка или карандаш.

Инструкция

Представьте, что перед вами 8 кроликов, а у вас есть только 5 морковок. Подумайте, морковок вам нужно еще купить, чтобы каждому кролику досталось по морковке.

Представим эту задачу в виде уравнения: 5 + x = 8. Подставим на место x число 3. Действительно, 5 + 3 = 8.

Когда вы подставляли число на место x, вы проделывали ту же операцию, что и при вычитании 5 из 8. Таким образом, чтобы найти неизвестное слагаемое, вычтите из суммы известное слагаемое.

Допустим, у вас 20 кроликов и только 5 морковок. Составим . Уравнение – это равенство, которое выполняется лишь при некоторых значениях входящих в него букв. Буквы, значения которых требуется отыскать, называются . Составьте уравнение с одним неизвестным, назовите его x. При решении нашей задачи про кроликов получается следующее уравнение: 5 + x = 20.

Найдем разницу между 20 и 5. При вычитании то число, из которого вычитают, уменьшаемое. То число, которое вычитают, называется , а конечный результат называется разностью. Итак, x = 20 – 5; x = 15. Нужно купить 15 морковок для кроликов.

Сделайте проверку: 5 + 15 = 20. Уравнение решено верно. Разумеется, когда речь идет о таких простых , проверку выполнять необязательно. Однако когда приходится уравнения с трехзначными, четырехзначными и тому числами, обязательно нужно выполнять проверку, чтобы быть абсолютно уверенным в результате своей работы.

Видео по теме

Полезный совет

Чтобы найти неизвестное уменьшаемое, надо к разности прибавить вычитаемое.

Чтобы найти неизвестное вычитаемое, надо от уменьшаемого отнять разность.

Совет 4: Как решить систему из трёх уравнений с тремя неизвестными

Система из трех уравнений с тремя неизвестными может и не иметь решений, несмотря на достаточное количество уравнений. Можно пытаться решить ее с помощью метода подстановки или с помощью метода Крамера. Метод Крамера помимо решения системы позволяет оценить, является ли система разрешимой, до того, как отыскать значения неизвестных.

Инструкция

Метод подстановки заключается в последовательном одной неизвестной через две других и подстановке полученного результата в уравнения системы. Пусть дана система из трех уравнений в общем виде:

a1x + b1y + c1z = d1

a2x + b2y + c2z = d2

a3x + b3y + c3z = d3

Выразите из первого уравнения x: x = (d1 - b1y - c1z)/a1 - и подставьте во второе и третье уравнения, затем из второго уравнения выразите y и подставьте в третье. Вы получите линейное выражение для z через коэффициенты уравнений системы. Теперь идите "обратно": подставьте z во второе уравнение и найдите y, а затем z и y подставьте в первое и найдите x. Процесс в общем виде отображен на рисунке до нахождения z. Дальше запись в общем виде будет слишком громоздкой, на практике, подставив , вы довольно легко найдете все три неизвестные.

Метод Крамера заключается в составлении матрицы системы и вычислении определителя этой матрицы, а также еще трех вспомогательных матриц. Матрица системы составляется из коэффициентов при неизвестных членах уравнений. Столбец, содержащий числа, стоящие в правых частях уравнений, столбцом правых частей. В системы он не используется, но используется при решении системы.

Видео по теме

Обратите внимание

Все уравнения в системе должны поставлять дополнительную независимую от других уравнений информацию. Иначе система будет недоопределена и однозначного решения найти будет не возможно.

Полезный совет

После решения системы уравнений подставьте найденные значения в исходную систему и проверьте, что они удовлетворяют всем уравнениям.

Само по себе уравнение с тремя неизвестными имеет множество решений, поэтому чаще всего оно дополняется еще двумя уравнениями или условиями. В зависимости от того, каковы исходные данные, во многом будет зависеть ход решения.

Вам понадобится

  • - система из трех уравнений с тремя неизвестными.

Инструкция

Если два из трех системы имеют лишь две неизвестные из трех, попытайтесь выразить одни переменные через другие и подставить их в уравнение с тремя неизвестными . Ваша цель при этом – превратить его в обычное уравнение с неизвестной. Если это , дальнейшее решение довольно просто – подставьте найденное значение в другие уравнения и найдите все остальные неизвестные.

Некоторые системы уравнений можно вычитанием из одного уравнения другого. Посмотрите, нет ли возможности умножить одно из на или переменную так, чтобы сократились сразу две неизвестные. Если такая возможность есть, воспользуйтесь ею, скорее всего, последующее решение не составит труда. Не забывайте, что при умножении на число необходимо умножать как левую часть, так и правую. Точно также, при вычитании уравнений необходимо помнить о том, что правая часть должна также вычитаться.

Если предыдущие способы не помогли, воспользуйтесь общим способом решений любых уравнений с тремя неизвестными . Для этого перепишите уравнения в виде а11х1+a12х2+а13х3=b1, а21х1+а22х2+а23х3=b2, а31х1+а32х2+а33х3=b3. Теперь составьте матрицу коэффициентов при х (А), матрицу неизвестных (Х) и матрицу свободных (В). Обратите внимание, умножая матрицу коэффициентов на матрицу неизвестных, вы получите матрицу, матрице свободных членов, то есть А*Х=В.

Найдите матрицу А в степени (-1) предварительно отыскав , обратите внимание, он не должен быть равен нулю. После этого умножьте полученную матрицу на матрицу В, в результате вы получите искомую матрицу Х, с указанием всех значений.

Найти решение системы из трех уравнений можно также с помощью метода Крамера. Для этого найдите определитель третьего порядка ∆, соответствующий матрице системы. Затем последовательно найдите еще три определителя ∆1, ∆2 и ∆3, подставляя вместо значений соответствующих столбцов значения свободных членов. Теперь найдите х: х1=∆1/∆, х2=∆2/∆, х3=∆3/∆.

Источники:

  • решений уравнений с тремя неизвестными

Приступая к решению системы уравнений, разберитесь с тем, какие это уравнения. Достаточно хорошо изучены способы решения линейных уравнений. Нелинейные уравнения чаще всего не решаются. Имеются лишь одни частные случаи, каждый из которых практически индивидуален. Поэтому изучение приемов решения следует начать с уравнений именно линейных. Такие уравнения можно решать даже чисто алгоритмически.

знаменатели при найденных неизвестных совершено одинаковы. Да и у числителей просматриваются некоторые закономерности их построения. Если размерность системы уравнений была бы большей двух, то метод исключения приводил бы к весьма громоздким выкладкам. Чтобы их избежать, разработаны чисто алгоритмические способы решения. Самый простой из них алгоритм Крамера (формулы Крамера). Для следует узнать, общая система уравнений из n уравнений.

Система n линейных алгебраических уравнений с n неизвестными имеет вид (см. рис. 1a). В ней аij – коэффициенты системы,
хj – неизвестные, bi – свободные члены (i=1, 2, ... , n; j=1, 2, ... , п). Компактно такую систему можно записывать в матричной форме АХ=B. Здесь А – матрица коэффициентов системы, Х – матрица-столбец неизвестных, B – матрица-столбец свободных членов (см. рис 1b). По методу Крамера каждое неизвестное xi =∆i/∆ (i=1,2…,n). Определитель ∆ матрицы коэффициентов называют главным, а ∆i вспомогательным. Для каждой неизвестной вспомогательный определитель находят с помощью замены i-го столбца главного определителя на столбец свободных членов. Подробно метод Крамера для случая систем второго и третьего порядка представлен на рис. 2.

Система представляет собой объединение двух или более равенств, в каждом из которых имеется по два или более неизвестных. Существуют два основных способа решения систем линейных уравнений, которые используются в рамках школьной программы. Один из них носит название метода , другой - метода сложения.

Стандартный вид системы из двух уравнений

При стандартном виде первое уравнение имеет вид a1*x+b1*y=с1, второе уравнение имеет вид a2*x+b2*y=c2 и так далее. Например, в случае с двумя частями системы в обоих приведенных a1, a2, b1, b2, c1, c2 - некоторые числовые коэффициенты, представленные в конкретных уравнениях. В свою очередь, x и у представляют собой неизвестные, значения которых нужно определить. Искомые значения обращают оба уравнения одновременно в верные равенства.

Решение системы способом сложения

Для того чтобы решить систему , то есть найти те значения x и y, которые превратят их в верные равенства, необходимо предпринять несколько несложных шагов. Первый из них заключается в преобразовании любого из уравнений таким образом, чтобы числовые коэффициенты для переменной x или y в обоих уравнениях совпадали по модулю, но различались по знаку.

Например, пусть задана система, состоящая из двух уравнений. Первое из них имеет вид 2x+4y=8, второе имеет вид 6x+2y=6. Одним из вариантов выполнения поставленной задачи является домножение второго уравнения на коэффициент -2, которое приведет его к виду -12x-4y=-12. Верный выбор коэффициента является одной из ключевых задач в процессе решения системы способом сложения, поскольку он определяет весь дальнейший ход процедуры нахождения неизвестных.

Теперь необходимо осуществить сложение двух уравнений системы. Очевидно, взаимное уничтожение переменных с равными по значению, но противоположными по знаку коэффициентами приведет его к виду -10x=-4. После этого необходимо решить это простое уравнение, из которого однозначно следует, что x=0,4.

Последним шагом в процессе решения является подстановка найденного значения одной из переменных в любое из первоначальных равенств, имеющихся в системе. Например, подставляя x=0,4 в первое уравнение, можно получить выражение 2*0,4+4y=8, откуда y=1,8. Таким образом, x=0,4 и y=1,8 являются корнями приведенной в примере системы.

Для того чтобы убедиться, что корни были найдены верно, полезно произвести проверку, подставив найденные значения во второе уравнение системы. Например, в данном случае получается равенство вида 0,4*6+1,8*2=6, которое является верным.

Видео по теме

Данная статья рассматривает сравнение дробей. Здесь мы выясним, какая из дробей больше или меньше, применим правило, разберем примеры решения. Сравним дроби как с одинаковыми, так и разными знаменателями. Произведем сравнение обыкновенной дроби с натуральным числом.

Yandex.RTB R-A-339285-1

Сравнение дробей с одинаковыми знаменателями

Когда производится сравнение дробей с одинаковыми знаменателями, мы работаем только с числителем, а значит, сравниваем доли числа. Если имеется дробь 3 7 , то она имеет 3 доли 1 7 , тогда дробь 8 7 имеет 8 таких долей. Иначе говоря, если знаменатель одинаковый, производится сравнение числителей этих дробей, то есть 3 7 и 8 7 сравниваются числа 3 и 8 .

Отсюда следует правило сравнения дробей с одинаковыми знаменателями:из имеющихся дробей с одинаковыми показателями считается большей та дробь, у которой числитель больше и наоборот.

Это говорит о том, что следует обратить внимание на числители. Для этого рассмотрим пример.

Пример 1

Произвести сравнение заданных дробей 65 126 и 87 126 .

Решение

Так как знаменатели дробей одинаковые, переходим к числителям. Из чисел 87 и 65 очевидно, что 65 меньше. Исходя из правила сравнения дробей с одинаковыми знаменателями имеем, что 87 126 больше 65 126 .

Ответ: 87 126 > 65 126 .

Сравнение дробей с разными знаменателями

Сравнение таких дробей можно соотнести со сравнением дробей с одинаковыми показателями, но имеется различие. Теперь необходимо дроби приводить к общему знаменателю.

Если имеются дроби с разными знаменателями, для их сравнения необходимо:

  • найти общий знаменатель;
  • сравнить дроби.

Рассмотрим данные действия на примере.

Пример 2

Произвести сравнение дробей 5 12 и 9 16 .

Решение

В первую очередь необходимо привести дроби к общему знаменателю. Это делается таким образом: находится НОК, то есть наименьший общий делитель, 12 и 16 . Это число 48 . Необходимо надписать дополнительные множители к первой дроби 5 12 , это число находится из частного 48: 12 = 4 , для второй дроби 9 16 – 48: 16 = 3 . Запишем получившееся таким образом: 5 12 = 5 · 4 12 · 4 = 20 48 и 9 16 = 9 · 3 16 · 3 = 27 48 .

После сравнения дробей получаем, что 20 48 < 27 48 . Значит, 5 12 меньше 9 16 .

Ответ: 5 12 < 9 16 .

Имеется еще один способ сравнения дробей с разными знаменателями. Он выполняется без приведения к общему знаменателю. Рассмотрим на примере. Чтобы сравнить дроби a b и c d , приводим к общему знаменателю, тогда b · d , то есть произведение этих знаменателей. Тогда дополнительные множители для дробей будут являться знаменатели соседней дроби. Это запишется так a · d b · d и c · b d · b . Используя правило с одинаковыми знаменателями, имеем, что сравнение дробей свелось к сравнениям произведений a · d и c · b . Отсюда получаем правило сравнения дробей с разными знаменателями:если a · d > b · c , тогда a b > c d , но если a · d < b · c , тогда a b < c d . Рассмотрим сравнение с разными знаменателями.

Пример 3

Произвести сравнение дробей 5 18 и 23 86 .

Решение

Данный пример имеет a = 5 , b = 18 , c = 23 и d = 86 . Тогда необходимо вычислить a · d и b · c . Отсюда следует, что a · d = 5 · 86 = 430 и b · c = 18 · 23 = 414 . Но 430 > 414 , тогда заданная дробь 5 18 больше, чем 23 86 .

Ответ: 5 18 > 23 86 .

Сравнение дробей с одинаковыми числителями

Если дроби имеют одинаковые числители и разные знаменатели, тогда можно выполнять сравнение по предыдущему пункту. Результат сравнения возможет при сравнении их знаменателей.

Имеется правило сравнения дробей с одинаковыми числителями: из двух дробей с одинаковыми числителями больше та дробь, которая имеет меньший знаменатель и наоборот.

Рассмотрим на примере.

Пример 4

Произвести сравнение дробей 54 19 и 54 31 .

Решение

Имеем, что числители одинаковые, значит, что дробь, имеющая знаменатель 19 больше дроби, которая имеет знаменатель 31 . Это понятно, исходя из правила.

Ответ: 54 19 > 54 31 .

Иначе можно рассмотреть на примере. Имеется две тарелки, на которых 1 2 пирога, анна другой 1 16 . Если съесть 1 2 пирога, то насытишься быстрей, нежели только 1 16 . Отсюда вывод, что наибольший знаменатель при одинаковых числителях является наименьшим при сравнении дробей.

Сравнение дроби с натуральным числом

Сравнение обыкновенной дроби с натуральным числом идет как и сравнение двух дробей с записью знаменателей в виде 1 . Для детального рассмотрения ниже приведем пример.

Пример 4

Необходимо выполнить сравнение 63 8 и 9 .

Решение

Необходимо представить число 9 в виде дроби 9 1 . Тогда имеем необходимость сравнения дробей 63 8 и 9 1 . Далее следует приведение к общему знаменателю путем нахождения дополнительных множителей. После этого видим, что нужно сравнить дроби с одинаковыми знаменателями 63 8 и 72 8 . Исходя из правила сравнения, 63 < 72 , тогда получаем 63 8 < 72 8 . Значит, заданная дробь меньше целого числа 9 , то есть имеем 63 8 < 9 .

Ответ: 63 8 < 9 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Продолжаем изучать дроби. Сегодня мы поговорим об их сравнении. Тема интересная и полезная. Она позволит новичку почувствовать себя учёным в белом халате.

Суть сравнения дробей заключается в том, чтобы узнать какая из двух дробей больше или меньше.

Чтобы ответить на вопрос какая из двух дробей больше или меньше, пользуются , такими как больше (>) или меньше (<).

Ученые-математики уже позаботились о готовых правилах, позволяющие сразу ответить на вопрос какая дробь больше, а какая меньше. Эти правила можно смело применять.

Мы рассмотрим все эти правила и попробуем разобраться, почему происходит именно так.

Содержание урока

Сравнение дробей с одинаковыми знаменателями

Дроби, которые нужно сравнить, попадаются разные. Самый удачный случай это когда у дробей одинаковые знаменатели, но разные числители. В этом случае применяют следующее правило:

Из двух дробей с одинаковыми знаменателями больше та дробь, у которой числитель больше. И соответственно меньше будет та дробь, у которой числитель меньше.

Например, сравним дроби и и ответим, какая из этих дробей больше. Здесь одинаковые знаменатели, но разные числители. У дроби числитель больше, чем у дроби . Значит дробь больше, чем . Так и отвечаем. Отвечать нужно с помощью значка больше (>)

Этот пример можно легко понять, если вспомнить про пиццы, которые разделены на четыре части. пиццы больше, чем пиццы:

Каждый согласится с тем, что первая пицца больше, чем вторая.

Сравнение дробей с одинаковыми числителями

Следующий случай, в который мы можем попасть, это когда числители дробей одинаковые, но знаменатели разные. Для таких случаев предусмотрено следующее правило:

Из двух дробей с одинаковыми числителями больше та дробь, у которой знаменатель меньше. И соответственно меньше та дробь, у которой знаменатель больше.

Например, сравним дроби и . У этих дробей одинаковые числители. У дроби знаменатель меньше, чем у дроби . Значит дробь больше, чем дробь . Так и отвечаем:

Этот пример можно легко понять, если вспомнить про пиццы, которые разделены на три и четыре части. пиццы больше, чем пиццы:

Каждый согласиться с тем, что первая пицца больше, чем вторая.

Сравнение дробей с разными числителями и разными знаменателями

Нередко случается так, что приходиться сравнивать дроби с разными числителями и разными знаменателями.

Например, сравнить дроби и . Чтобы ответить на вопрос, какая из этих дробей больше или меньше, нужно привести их к одинаковому (общему) знаменателю. Затем можно будет легко определить какая дробь больше или меньше.

Приведём дроби и к одинаковому (общему) знаменателю. Найдём (НОК) знаменателей обеих дробей. НОК знаменателей дробей и это число 6.

Теперь находим дополнительные множители для каждой дроби. Разделим НОК на знаменатель первой дроби . НОК это число 6, а знаменатель первой дроби это число 2. Делим 6 на 2, получаем дополнительный множитель 3. Записываем его над первой дробью:

Теперь найдём второй дополнительный множитель. Разделим НОК на знаменатель второй дроби . НОК это число 6, а знаменатель второй дроби это число 3. Делим 6 на 3, получаем дополнительный множитель 2. Записываем его над второй дробью:

Умножим дроби на свои дополнительные множители:

Мы пришли к тому, что дроби, у которых были разные знаменатели, превратились в дроби, у которых одинаковые знаменатели. А как сравнивать такие дроби мы уже знаем. Из двух дробей с одинаковыми знаменателями больше та дробь, у которой числитель больше:

Правило правилом, а мы попробуем разобраться почему больше, чем . Для этого выделим целую часть в дроби . В дроби ничего выделять не нужно, поскольку эта дробь уже правильная.

После выделения целой части в дроби , получим следующее выражение:

Теперь можно легко понять, почему больше, чем . Давайте нарисуем эти дроби в виде пицц:

2 целые пиццы и пиццы, больше чем пиццы.

Вычитание смешанных чисел. Сложные случаи.

Вычитая смешанные числа, иногда можно обнаружить, что всё идёт не так гладко, как хотелось бы. Часто случается так, что при решении какого-нибудь примера ответ получается не таким, каким он должен быть.

При вычитании чисел уменьшаемое должно быть больше вычитаемого. Только в этом случае будет получен нормальный ответ.

Например, 10−8=2

10 — уменьшаемое

8 — вычитаемое

2 — разность

Уменьшаемое 10 больше вычитаемого 8, поэтому мы получили нормальный ответ 2.

А теперь посмотрим, что будет если уменьшаемое окажется меньше вычитаемого. Пример 5−7=−2

5 — уменьшаемое

7 — вычитаемое

−2 — разность

В этом случае мы выходим за пределы привычных для нас чисел и попадаем в мир отрицательных чисел, где нам ходить пока рано, а то и опасно. Чтобы работать с отрицательными числами, нужна соответствующая математическая подготовка, которую мы ещё не получили.

Если при решении примеров на вычитание вы обнаружите, что уменьшаемое меньше вычитаемого, то можете пока пропустить такой пример. Работать с отрицательными числами допустимо только после их изучения.

С дробями ситуация та же самая. Уменьшаемое должно быть больше вычитаемого. Только в этом случае можно будет получить нормальный ответ. А чтобы понять больше ли уменьшаемая дробь, чем вычитаемая, нужно уметь сравнить эти дроби.

Например, решим пример .

Это пример на вычитание. Чтобы решить его, нужно проверить больше ли уменьшаемая дробь, чем вычитаемая. больше чем

поэтому смело можем вернуться к примеру и решить его:

Теперь решим такой пример

Проверяем больше ли уменьшаемая дробь, чем вычитаемая. Обнаруживаем, что она меньше:

В этом случае разумнее остановиться и не продолжать дальнейшее вычисление. Вернёмся к этому примеру, когда изучим отрицательные числа.

Смешанные числа перед вычитанием тоже желательно проверять. Например, найдём значение выражения .

Сначала проверим больше ли уменьшаемое смешанное число, чем вычитаемое. Для этого переведём смешанные числа в неправильные дроби:

Получили дроби с разными числителями и разными знаменателями. Чтобы сравнить такие дроби, нужно привести их к одинаковому (общему) знаменателю. Не будем подробно расписывать, как это сделать. Если испытываете затруднения, обязательно повторите .

После приведения дробей к одинаковому знаменателю, получаем следующее выражение:

Теперь нужно сравнить дроби и . Это дроби с одинаковыми знаменателями. Из двух дробей с одинаковыми знаменателями больше та дробь, у которой числитель больше.

У дроби числитель больше, чем у дроби . Значит дробь больше, чем дробь .

А это значит, что уменьшаемое больше, чем вычитаемое

А значит мы можем вернуться к нашему примеру и смело решить его:

Пример 3. Найти значение выражения

Проверим больше ли уменьшаемое, чем вычитаемое.

Переведём смешанные числа в неправильные дроби:

Получили дроби с разными числителями и разными знаменателями. Приведем данные дроби к одинаковому (общему) знаменателю.

Из двух дробей с одинаковыми знаменателями больше та, у которой числитель больше, и меньше та, у которой числитель меньше . На самом деле, ведь знаменатель показывает, на сколько частей разделили одну целую величину, а числитель показывает, сколько таких частей взяли.

Получается, что делили каждый целый круг на одно и то же число 5 , а брали разное количество частей: больше взяли — большая дробь и получилась.

Из двух дробей с одинаковыми числителями больше та, у которой знаменатель меньше, и меньше та, у которой знаменатель больше. Ну и, в самом деле, если мы один круг разделим на 8 частей, а другой на 5 частей и возьмем по одной части от каждого из кругов. Какая часть будет больше?

Конечно, от круга, поделенного на 5 частей! А теперь представьте, что делили не круги, а торты. Вы бы какой кусочек предпочли, точнее, какую долю: пятую или восьмую?

Чтобы сравнить дроби с разными числителями и разными знаменателями, надо привести дроби к наименьшему общему знаменателю, а затем сравнивать дроби с одинаковыми знаменателями.

Примеры. Сравнить обыкновенные дроби:

Приведем эти дроби к наименьшему общему знаменателю. НОЗ(4; 6)=12. Находим дополнительные множители для каждой из дробей. Для 1-й дроби дополнительный множитель 3 (12: 4=3 ). Для 2-й дроби дополнительный множитель 2 (12: 6=2 ). Теперь сравниваем числители двух получившихся дробей с одинаковыми знаменателями. Так как числитель первой дроби меньше числителя второй дроби (9<10) , то и сама первая дробь меньше второй дроби.



  • Разделы сайта