Сила мышц и условия ее проявления. Мышечная сила. Законы оптимальной нагрузки и оптимального ритма

Большинство людей знают, что объем мышц не является единственным показателем их силы. Чтобы в этом убедиться, достаточно вспомнить, какое телосложение было у великого Брюса Ли и на что он был способен. Конечно, в боевых искусствах, кроме силы, важную роль играет техника и ловкость. В действительности же бывает, что два человека с разным мышечным объемом одинаково хорошо показывают себя в тяжелоатлетических дисциплинах. А иногда и вовсе тот, кто гораздо меньше по объему, жмет больший вес. Наверное, именно по этой причине не все мужчины увлекаются накачкой мышц. Сегодня мы узнаем, от чего, кроме объема, зависит сила мышц.

Объем

Чем больше мускул, тем сильнее он гипертрофирован. Бывает два типа миофибриллярная и саркоплазматическая. Когда увеличивается в объеме, имеет место главным образом второй вид. Увеличение происходит за счет насыщения мускула саркоплазмой. Такая гипертрофия сама по себе не приносит увеличения силы. Но, к счастью атлетов, в чистом виде она и не встречается. Поэтому даже при увеличении объема в какой-то степени подключается миофибриллярная гипертрофия, которая увеличивает силу. Так что даже у тех, кто работает исключительно на массу, сила также растет.

Иннервация

Сила мышц в какой-то степени зависит также от иннервации. Она выражается обеспеченностью мышц двигательными нейронами. Как известно, мышечные ткани сокращаются под воздействием сигнала головного мозга. К волокнам мускулов он идет по мотонейронам - двигательным нервам. Чем больше у мышцы нейронных связей, тем больше она задействует и тем более сложную работу может проделать. У спортсменов-новичков обычно рекрутируется не более 80 % мышечных волокон. У профессионалов этот показатель доходит до 100 %. Чтобы повлиять на иннервацию, нужно просто регулярно тренироваться. Через какое-то время, под действием постоянных нагрузок, мотонейроны плотнее оплетут ваши мускулы.

Толщина сухожилий

От этого фактора вбольшой мере зависит сила и выносливость мышц. Организм человека устроен таким образом, что если он при развитии каких-либо физических параметров натыкается на слабое место, прекращает это самое развитие, вне зависимости от наших усилий. В данном случае имеется в виду, что мышца не может стать устойчивее к нагрузке, чем сухожилие. Когда мускул сокращается больше, чем может, сухожилие просто отрывается от кости. Поэтому организм, будучи совершенной системой, сдерживает рост силы мышцы, если она приближается к пределу прочности сухожилия. К сожалению, на этот фактор можно повлиять лишь отчасти. Толщина сухожилий в основном закладывается в детстве, на генетическом уровне. Взрослый человек с помощью регулярных тренировок может слегка увеличить выносливость сухожилий, но совсем незначительно.

Соотношение волокон

Многие наверняка знают, что в организме человека есть быстрые и медленные мышечные волокна. Их еще называют белыми и красными, соответственно. Конечно, различие между ними весьма условно. Красные волокна содержат больше митохондрий и лучше снабжаются кровью, поэтому они обуславливают не силу мышц, а их выносливость.

Белые волокна, в свою очередь, больше подходят для кратковременной взрывной работы, в которой необходима сила. Какие мышцы выполняют задачи - такие у них и волокна. К примеру, голень славится своей выносливостью, а грудная мышца - силой. По мере старения организма процент медленных волокон возрастает, а быстрых снижается. Происходит это путем трансформации одного вида в другой. На этот фактор повлиять нельзя. Соотношение волокон закладывается генетически. Поэтому одним людям с рождения лучше даются аэробные нагрузки, а другим - силовые. Все, что может человек в данном случае - подобрать упражнения, которые лучше развивают тот или иной вид мышечных волокон. Но разница, как вы понимаете, здесь весьма условна.

Эластичность мускулов

Как известно, все мускулы в нашем организме работают за счет сокращений и растяжений. Чем больше разница между этими двумя состояниями, тем больше сила мышц. Грубо говоря, здесь работает тот же принцип, что и в резиновом жгуте. Чем сильнее его растягивают, тем большей будет сила сжатия. От эластичности мышц зависит их способность к растягиванию, а следовательно, и сила сокращения. Это даже не физиологическая особенность, а биомеханическая. К счастью спортсменов, на этот фактор можно повлиять. Чтобы мускулы были эластичными, нужно просто регулярно и грамотно растягиваться.

Расположение сухожилий

Чтобы было понятно, как этот фактор влияет на силу мускула, разберем его детально на примере бицепса. Физиологически рука устроена таким образом, что от места крепления бицепса до локтевого сустава всегда есть промежуток. Его длина разная для каждого человека. Как это влияет на силу мускула? Здесь работает закон рычага. Чем ближе точка приложения силы (место крепления сухожилия) к оси вращения (локтевой сустав), тем больше руке нужно потратить сил для сгибания. Грубо говоря, если переместить сухожилие на пару сантиметров в сторону кисти, то сила мышц рук значительно возрастет. Конечно, это возможно лишь в теории. Такой же закон рычага применим практически ко всем мышечным группам, которые имеет человек. Сила мышц в этом случае дается нам с рождения. На расположение сухожилия нельзя никак повлиять. У разных людей оно отличается буквально на пару миллиметров. Кажется, что это незначительная разница, но она играет довольно весомую роль в формировании силы.

Количество мышечных волокон

В чем сила каната? Конечно же, в огромном количестве тонких ниточек. То же самое можно сказать и о наших мышечных тканях. Мускулы могут быть одинаковыми по объему, но состоять из разного количества волокон. Эта характеристика закладывается генетически и не меняется на протяжении жизни. Однако исследования ученых показали, что при воздействии на организм гормона роста волокна мускулов могут делиться. Но эта тема на сегодняшний день не настолько досконально изучена, чтобы давать обнадеживающие комментарии. Да и к тому же нас интересует природная сила мышц, без вмешательства каких-либо препаратов. Большое количество волокон способствует повышению иннервации, поэтому благоприятно сказывается на силе. Тот, у кого мышцы содержат больше волокон, способен показать большую силу, чем тот, чьи мускулы объемнее.

Психоэмоциональный фактор

Порой наши силы зависят не от способностей организма, а от уровня мотивации. В истории было много случаев, когда при угрозе для жизни человек показывал феноменальную силу. К примеру, выпав с балкона, мужчина схватился за трубу и провисел на руках до приезда спасателей. После он пытался повторить это достижение на перекладине, но не смог провисеть даже 10 % от того времени.

Мышцы сокращаются с той силой, с которой нервная система отправляет сигналы из мозга. В экстренной ситуации сигнал настолько велик, что организм задействует все энергетические ресурсы на выполнение этой задачи. Возможно, именно поэтому спортсмены-силовики перед выходом на арену колотят себя кулаками в грудь и кричат.

Немаловажную роль здесь также играют волевые качества индивида. Еще один пример - человек, не умеющий плавать, достает из бушующего моря утопающего ребенка, а спасатель с идеальным торсом стоит в растерянности на берегу. Может, здесь дело не в силе мышц, но принцип тот же. Тот, кто настроен на спасение, сделает это, даже будучи тощим, совершенно неспортивным человеком.

Заключение

Сегодня мы узнали, от чего зависит сила и работа мышц, и частично развеяли мнение о том, что большие мускулы сильнее. Почему частично? Потому что объем в какой-то степени все-таки увеличивает силовые показатели. Но если сопоставить размер мышц с остальными семью факторами, его место будет совсем незначительным.

Удивительно, но эти факторы действительно играют важную роль. Если сравнить двух мужчин с одинаковым телосложением, но разными характеристиками мышц (у одного все перечисленные показатели выше), то мы увидим разницу в силовых показателях. Причем исчисляться она будет не десятками, а сотнями процентов.

Тем не менее ни один уважающий себя спортсмен в случае провала не станет ссылаться на физиологическую предрасположенность к малым нагрузкам, и тому есть две причины. Во-первых, на 5 факторов из 8 можно повлиять. То есть развитие силы мышц действительно возможно. Догнать того, кому природой дано поднимать большие веса, реально, но придется проделать титаническую работу. Во-вторых, важнейшую роль играет психоэмоциональный фактор. Правильно мотивированный человек способен на все.

  • Скелетная мускулатура является составной частью опорно-двигательного аппарата человека. При этом мышцы выполняют следующие функции:

    1) обеспечивают определенную позу тела человека;

    2) перемещают тело в пространстве;

    3) перемещают отдельные части тела относительно друг друга;

    4) являются источником тепла, выполняя терморегуляционную функцию.

  • Свойства скелетной мышцы :

    1) Возбудимость - способность отвечать на действие раздражителя изменением ионной проводимости и мембранного потенциала. В естественных условиях этим раздражителем является медиатор ацетилхолин, который выделяется в пресинаптических окончаниях аксонов мотонейронов. В лабораторных условиях часто используют электрическую стимуляцию мышцы. При электрической стимуляции мышцы первоначально возбуждаются нервные волокна, которые выделяют ацетилхолин, т.е. в данном случае наблюдается непрямое раздражение мышцы. Это обусловлено тем, что возбудимость нервных волокон выше мышечных. Для прямого раздражения мышцы необходимо применять миорелаксанты - вещества, блокирующие передачу нервного импульса через нервно-мышечный синапс;

    2) Низкая проводимость (10-13 м/с) - способность проводить потенциал действия вдоль и вглубь мышечного волокна по Т-системе;

    3) Сократимость - способность укорачиваться или развивать напряжение при возбуждении;

    4) Эластичность - способность развивать напряжение при растягивании.

    5) Рефрактерность – отсутствие или снижение возбудимости нерва или мышцы после предшествующего возбуждения. Занимает по времени больший отрезок, чем у нервного волокна.

    6) Лабильность – функциональная подвижность, скорость протекания элементарных циклов возбуждения в нервной и мышечной тканях

  • Основными показателями, характеризующими деятельность мышц, являются их сила и работоспособность.

  • Сила мышц . Сила - мера механического воздействия на мышцу со стороны других тел, которая выражается в ньютонах или кг-силах. При изотоническом сокращении в эксперименте сила определяется массой максимального груза, который мышца может поднять (динамическая сила ); при изометрическом - максимальным напряжением, которое она может развить (статическая сила).

    Одиночное мышечное волокно развивает напряжение в 100-200 кг-сил во время сокращения.

    Степень укорочения мышцы при сокращении зависит от силы раздражителя, морфологических свойств и физиологического состояния. Длинные мышцы сокращаются на большую величину, чем короткие.

    Незначительное растяжение мышцы, когда напрягаются упругие компоненты, является дополнительным раздражителем, увеличивает сокращение мышцы, а при сильном растяжении сила сокращения мышцы уменьшается.

    Напряжение, которое могут развивать миофибриллы, определяется числом поперечных мостиков миозиновых нитей, взаимодействующих с нитями актина, так как мостики служат местом взаимодействия и развития усилия между двумя типами нитей. В состоянии покоя довольно значительная часть поперечных мостиков взаимодействует с актиновыми нитями. При сильном растяжении мышцы актиновые и миозиновые нити почти перестают перекрываться и между ними образуются незначительные поперечные связи.

    Величина сокращения снижается также при утомлении мышцы.

    Изометрически сокращающаяся мышца развивает максимально возможное для нее напряжение в результате активации всех мышечных волокон. Такое напряжение мышцы называют максимальной силой . Максимальная сила мышцы зависит от числа мышечных волокон, составляющих мышцу, и их толщины. Они формируют анатомический поперечник мышцы, который определяется как площадь поперечного разреза мышцы, проведенного перпендикулярно ее длине. Отношение максимальной силы мышцы к ее анатомическому поперечнику называется относительной силой мышцы, измеряемой в кг/см2.

    Физиологический поперечник мышцы - длина поперечного разреза мышцы, перпендикулярного ходу ее волокон.

    В мышцах с параллельным ходом волокон физиологический поперечник совпадает с анатомическим. У мышц с косыми волокнами он будет больше анатомического. Поэтому сила мышц с косыми волокнами всегда больше, чем мышц той же толщины, но с продольными волокнами. Большинство мышц домашних животных и особенно птиц с косыми волокнами перистого строения. Такие мышцы имеют больший физиологический поперечник и обладают большей силой.

    Наиболее сильными являются многоперистые мышцы, затем идут одноперистые, двухперистые, полуперистые, веретенообразные и продольноволокнистые.

    Много, -одно, -и двухперистые мышцы имеют большую силу и выносливость (мало утомляются), но ограниченную способность к укорачиванию, а остальные виды мышц хорошо укорачиваются, но быстро утомляются.

    Сравнительным показателем силы разных мышц является абсолютная мышечная сила - отношение максимальной силы мышцы к ее физиологическому поперечнику, т.е. максимальный груз, который поднимает мышца, деленный на суммарную площадь всех мышечных волокон. Она определяется при тетаническом раздражении и при оптимальном исходном растяжении мышцы. У сельскохозяйственных животных абсолютная сила скелетных мышц колеблется от 5 до 15 кг-сил, в среднем 6-8 кг-сил на 1см2 площади физиологического поперечника. В процессе мышечной работы поперечник мышцы увеличивается и, следовательно, возрастает сила данной мышцы.

  • Работа мышц . Работа мышц внешне выражается либо в фиксации части тела, либо в движении. В первом случае говорят о так называемой статической работе, а во втором – о динамической работе.

    Статическая работа мышц есть следствие равенства моментов сил и называется еще удерживающей работой. При такой работе форма мышцы, ее размеры, возбуждение и напряжение относительно постоянны.

    Динамическая работа мышц сопровождается движением и есть следствие разности моментов сил. В зависимости от того, какой момент окажется большим, различают два вида динамической работы мышц: преодолевающую и уступающую. Превалирование момента силы мышцы или группы мышц приводит к преодолевающей работе, а уменьшение момента силы мышцы – к уступающей работе.

    Различают еще баллистическую работу мышц, которая является разновидностью преодолевающей работы: мышца совершает быстрое сокращение и последующее расслабление, после которого костное звено продолжает движение по инерции.

      (10) Виды и режимы сокращения скелетной мышцы. Одиночное мышечное сокращение, его фазы. Тетанус и его виды. Оптимум и пессимум раздражения.

      Виды сокращений .

      У скелетной мышцы выделяют одиночное сокращение и суммированное сокращение (тетанус).

      Одиночное сокращение - это сокращение, которое возникает на одиночный стимул, достаточный для вызова возбуждения мышцы.

      Фазы одиночного мышечного сокращения :

      Латентный период. Представляет собой сумму временных задержек, обусловленных возбуждением мембраны мышечного волокна, распространением ПД по Т-системе внутрь волокна, образованием инозитолтрифосфата, повышением концентрации внутриклеточного кальция и активации поперечных мостиков. Для портняжной мышцы лягушки латентный период составляет около 2 мс.

      Период укорочения, или развития напряжения.

      Период расслабления, когда уменьшается концентрация ионов Са2+ и головки миозина отсоединяются от актиновых филаментов.

      При воздействии на мышцу ритмических раздражений высокой частоты наступает сильное и длительное сокращение мышцы, которое называется тетаническим сокращением , или тетанусом.

      Тетанус может быть зубчатым (при частоте раздражений 20-40 Гц) или гладким (при частоте 50 Гц и выше). Амплитуда тетанического сокращения в 2–4 раза выше амплитуды одиночного сокращения при той же силе раздражения.

      Гладкий тетанус возникает тогда, когда очередной импульс раздражения действует на мышцу до начала фазы расслабления. При очень большой частоте раздражений каждое очередное раздражение будет попадать на фазу абсолютной рефрактерности и мышца вообще не будет сокращаться. Высота мышечного сокращения при тетанусе зависит от ритма раздражения, а также от возбудимости и лабильности, которые изменяются в процессе сокращения мышцы. Тетанус наиболее высокий при оптимальном ритме, когда каждый последующий импульс действует на мышцу в фазу экзальтации, вызванной предыдущим импульсом. В этом случае создаются наилучшие условия (оптимум силы и частоты раздражения, оптимум ритма) для работы мышцы.

      При тетанических сокращениях мышечные волокна утомляются больше, чем при одиночных сокращениях. Поэтому даже в пределах одной мышцы происходит периодическая смена частоты импульсации (вплоть до полного исчезновения) в разных двигательных единицах.

      Для скелетной мышцы характерны два основных режима сокращения - изометрический и изотонический.

      Изометрический режим проявляется в том, что в мышце во время ее активности нарастает напряжение (генерируется сила), но из-за того, что оба конца мышцы фиксированы (например, мышца пытается поднять большой груз), она не укорачивается.

      При изотоническом режиме мышца первоначально развивает напряжение (силу), способную поднять данный груз, а потом укорачивается (меняет свою длину, сохраняя напряжение, равное весу поднимаемого груза).

      Оптимум – уровень силы или частоты раздражений, при котором осуществляется максимальная деятельность органа или ткани. Явление О. описано Н. Введенским, который на нервно-мышечном препарате лягушки установил, что нарастание до некоторого предела частоты или силы раздражений усиливает длительное, слитное сокращение мышцы - тетанус. О. объясняют тем, что в этих случаях каждое последующее раздражение падает на мышцу в период повышенной её возбудимости, вызванной предыдущим раздражением.

      Пессимум - угнетение деятельности органа или ткани, вызываемое чрезмерной частотой или силой наносимых раздражений. Это явление было описано Н. Введенским. Исследуя особенности проведения нервного импульса в нервно-мышечном препарате лягушки, он обнаружил, что усиление тетануса, вызываемое постепенным возрастанием частоты или силы раздражений, при дальнейшем их учащении или усилении, внезапно сменяется расслаблением мышцы и полным торможением её активности. Введенский трактовал это явление с позиций разработанной им теории парабиоза . Согласно этой теории, работоспособность нервных окончаний, передающих импульсы мышце, после прохождения волны возбуждения резко падает, и для восстановления их работоспособности требуется некоторое время (в нервно-мышечном препарате икроножной мышцы лягушки - 0,02-0,03 сек). Это время определяет функциональные возможности нервных окончаний - их лабильность . Если интервал между раздражениями меньше этого необходимого периода, то есть если он превышает лабильность нервных окончаний, в них развивается своеобразное стойкое нераспространяющееся возбуждение - парабиоз , блокирующее проведение нервных импульсов к мышце и тормозящее тем самым её активность, предохраняя от переутомления. Описываемое явление носит обратимый характер: снижение интенсивности раздражения восстанавливает мышечное сокращение.

    Все, кто любит спорт, знают, конечно, имя замечательного советского спортсмена, рекордсмена мира по прыжкам в длину Игоря Тер-Ованесяна . Но не всем, вероятно, известно, что однажды, после неудачного падения во время лыжной тренировки, Игорь услышал от врачей:

    – Вы больше не спортсмен, молодой человек.

    Нет, нога не была сломана, но частично были повреждены мышечные и нервные волокна, наступила атрофия мышц – уменьшение ее в размерах, ослабление, что бывает при длительном бездействии или нарушении питания мышцы.

    Приговор был тяжелым, но… через два с половиной года Игорь установил новый рекорд мира. Как же это могло произойти? «Чудо» сотворил спорт.

    Сам спортсмен, уезжая домой, говорил друзьям:

    — Буду потихоньку тренироваться. Я верю в поистине чудодейственную силу физических упражнений – они еще никого никогда не подводили.

    И вот «чудо» произошло. В июне 1962 года на соревнованиях в Ереване Игорь Тер-Ованесян прыгнул на 8 метров 31 сантиметр. А совсем недавно, в октябре 1967 года, на предолимпийских соревнованиях в Мехико Игорь довел рекорд Европы в прыжках в длину до 8 метров 35 сантиметров. Это повторение мирового рекорда американского спортсмена Ральфа Бостона .

    Сила мышц человека

    «Мышечное сокращение – это одно из удивительных явлений в живом мире. Поистине чудо, что мягкий студень может внезапно становиться твердым, изменять свою форму и поднимать груз, вес которого в тысячу раз выше его собственного, да притом еще делать это не один раз. Мышца, без сомнения, один из интереснейших экспонатов в богатом музее природы ». Эти слова принадлежат известному венгерскому ученому Сент-Дьёрди.

    Каждый знает, что даже самое простое движение осуществляется при участии многих мышц. Одни обеспечивают основное движение, другие – плавность и соразмерность движений.

    Они позволяют человеку осуществлять бесконечное многообразие движений с различной силой сокращений. Ведь иногда надо поднять с пола спичку, а иногда тяжелую гирю.

    От чего же зависит сила мышечного сокращения ? Все от тех же нервных импульсов, о которых мы уже говорили.

    Вообще в организме мышцы никогда не бывают вполне расслабленными. Это постоянное их напряжение называется тонусом (от греческого слова «тонос» – напряжение). Интересно, что мышечный тонус сохраняется без всякой затраты энергии. Это и понятно: ведь энергию приходится затрачивать тогда, когда нужно выполнить какую-то работу.

    Вот простой пример. На стене висит картина. Казалось бы, что гвоздь, на котором она держится, многие годы верно выполняет свою службу. А ведь с точки зрения физики он «безработный», так как никакой видимой энергии при этом не затрачивает.

    Но почему же человек устает, если неподвижно сидит или несет тяжесть, скажем, под уклон? Ведь кастрюля, стоящая на столе, «не устает», даже если она наполнена водой.

    Конечно, любому школьнику понятно, что стоящий человек по сравнению с любым неодушевленным предметом непрерывно работает – он должен поддерживать равновесие. Идущий человек работает еще энергичнее – ему с каждым шагом приходится поднимать тяжесть собственного тела. И энергия эта буквально «уходит в землю»: она передается почве, вызывая ее сотрясение. Чем больше весит тело человека и груз, который он несет, тем больше расходуется энергии.

    Энергия, энергетические процессы … Те, что происходят в живом организме, очень сложны. Найти для этих процессов какое-либо подобие в технике пока нельзя. Ни одна тепловая машина не работает так экономно и не имеет такого высокого коэффициента полезного действия, как живая мышца. КПД мышцы приближается к 50 процентам, тогда, как, например, у паровых машин он почти в 10 раз ниже – 5–7 процентов.

    Наши мышцы обладают и еще одним ценным качеством – они могут работать «в долг», за счет собственных энергетических запасов.

    Кто бегал стометровку, тот знает: за те 10–14 секунд можно успеть сделать всего один-два вдоха. Да и кровь за этот короткий промежуток времени, конечно, не успеет доставить мышцам нужное им количество кислорода. Для этого ей пришлось бы протекать по кровеносным сосудам в десятки раз быстрее, чем обычно.

    Но вот спринтер у финиша, он еще бежит несколько метров, потом идет шагом, останавливается. Теперь он дышит часто и глубоко, сердце его бьется значительно быстрее и с каждым ударом выбрасывает в сосуды намного больше крови , чем до старта.

    Конечно, мышца не может работать «в долг» неограниченное время. Наступает момент, когда ее энергетические запасы истощаются – мышца устает. И этому есть характерные примеры.

    Кто видел когда-нибудь на стадионе бег на 400 метров? Это зрелище очень хорошо иллюстрирует умение наших мышц работать «в кредит».

    Сначала бегуны несутся как настоящие спринтеры; в таком темпе они пробегают первые 200 метров. Может быть, удается пробежать и еще 100 метров в том же темпе. Но картина бега резко меняется: как будто тяжелый груз придавливает спортсменов к земле, причем всех почти одновременно. Кажется, что бегут они, как говорится, только волей, «на нервах».

    «Скисли!» – презрительно заметит иной неопытный болельщик или случайный зритель. Но ведь это совсем не так. И если кто хоть раз, пробегая эту дистанцию, испытал на себе ни с чем не сравнимое чувство свинцовой тяжести вблизи трехсотметровой отметки, тот никогда так не скажет.

    Почему мышцы устают?

    Первые две стометровки мышцы бурно расходуют энергию, и подходит момент, когда запасы ее истощились, а переработанные вещества – продукты обмена, ненужные организму (например, так называемая молочная кислота – один из конечных продуктов распада гликогена – животного крахмала),– не успели удалиться.

    В это время спортсмен как раз и ощущает сильное мышечное утомление, и бег намного замедляется: мышцы, использовав все оставшиеся запасы энергии и питания, работают практически без доставки кислорода. Но вот кровь начинает циркулировать быстрее, дыхание и сердцебиение учащаются. Мышцы снова начинают получать достаточное количество кислорода. Сила мышц вновь возрастает.

    Такого тяжелого перелома не бывает, если спортсмен бежит на длинную дистанцию. У стайера утомление накапливается постепенно, но тоже иногда достигает такой степени, что впору сходить с беговой дорожки. Так иногда и поступают новички. Если же силы воли и опыта хватает и бег продолжается, то бегун вдруг ощущает прилив новых сил. Спортсмены образно назвали его «вторым дыханием ». Это значит, что мышцы, как и весь организм, приспособились к новому ритму работы.

    И, наконец, мышцы обладают еще одним важным свойством – способностью к тренировке .

    Это способность человека преодолевать внешнее сопротивление или противостоять ему за счёт мышечных усилий (напряжений).

    Сила человека представляет собой его способность справляться с внешним сопротивлением либо противодействовать ему благодаря мышечным усилиям. Если не развивать физическую силу, то и овладеть спортивным мастерством не получится. Ведь она в большей степени определяет быстроту движений, а так же играет огромную роль в работе, которая требует ловкости и выносливости.

    Сила мышцы напрямую зависит от сократительной силы ее мышечных волокон, то есть от размера физиологического поперечника, проходящего через все ее волокна и равного площади поперечного се
    чения (исчисляется в см2).

    Большая часть мышц человека имеют перистое строение, то есть их волокна друг к другу расположены под углом. Существуют мышцы, которые имеют параллельное и веретенообразное местоположение волокон. Так, к примеру, протяжные мышцы имеют параллельный ход волокон, а двуглавая мышца бедра наоборот – веретенообразный.

    У перистых мышц при такой точно толщине, что и у мышц с веретенообразным и параллельным расположением волокон, больше физиологический поперечник, так как мышечных волокон в нем укладывается больше. Как результат перистая мышца мощнее.

    Основная способность перистого строения мышц – это формирование мышечного напряжения. Если они проигрывают в величине укорочения, то в силе сокращения они выигрывают. Мышцам с веретенообразными мышцами и параллельными волокнами в большей степени характерно значительные трансформации длинны, что обеспечивает в различных суставах более выраженные движения.

    Мышцы отличаются также и по анатомическому поперечнику, так называемому поперечному сечению, которое перпендикулярно к длине мышцы не учитывая особенностей расположения в ней волокон. Поэтому чем анатомический поперечник больше, тем толще мышца, тем она может развивать большую силу. При равных прочных условиях сила соразмерна поперечному сечению мышцы, а высота сокращения – соразмерна длине мышечных волокон.

    Например, одиночная двигательная единица, которая состоит из 100 волокон, способна развивать силу в 10-20 г. Большая часть скелетных мышц обладает силой, которая превышает вес тела. Все человеческие мышцы содержат порядка 300 млн. волокон. Поэтому если бы они функционировали в одну сторону, то способны били бы развить силу, равную 25 тоннам.

    На скорость сократительного акта определенное влияние оказывает строение мышц – перистые мышцы являются наиболее «быстрыми».

    Быстрая сила мышц является понятием обобщенным и относительным. Сила, которая проявляется в быстрых движениях, обладает множеством качественных оттенков, и порой между ними довольно сложно провести грань. Приблизительно дифференцируя, можно определить две основополагающие группы движений, которые требуют быструю силу: первая, движения, где играет роль преимущественно быстрота перемещения при преодолении сравнительно небольшого сопротивления, вторая, движения, при которых рабочий эффект зависит от быстроты развития двигательного усилия при преодолении существенного сопротивления. Абсолютная сила мышц для выполнения первых движений не имеет существенной роли, а для вторых движений ее величина значима в рабочем эффекте.

    Для первой группы различают движения, которые связаны со скоростью реагирования на опр еделенный сигнал извне либо в целом ситуацию, со скоростью однократных отдельных напряжений и с частотой повторяемых напряжений. Во второй группе стоит выделить движения по разновидности напряжения мышц: имеющее изометрическое взрывное напряжение (они связаны с одолением сравнительно большого отягощения и если нужно быстро развить максимальную силу), с баллистическим взрывным напряжением (стремительное преодоление сопротивления, незначительного по весу), и с взрывным реактивным баллистическим напряжением, при котором главное рабочее усилие развивается немедленно после того, как мышцы предварительно растянутся.

    Следовательно, проявление быстрой силы очень разнообразно, ее природа довольно специфична, она обнаруживает сравнительно плохой «перенос» при движении и относительно медленный темп развития.

    Физическая сила человека - это способность двигать груз, преодолевая сопротивление. Грузом может быть чье-то тело, лопата со снегом, гантель с дисками или любые другие предметы. Сопротивлением обычно выступает сила притяжения Земли, которую невозможно отделить от груза, потому что вес груза определяется как количество силы, которое необходимо, чтобы оторвать этот груз от центра Земли. Есть и другие формы сопротивления, не связанные с силой притяжения, такие, как, например, упругое сопротивление, которое можно преодолеть, растягивая пружину, или сопротивление трения, которое преодолевается, когда везешь сани.

    Cуществует много форм силы мышц, каждая специфична для какой-то особой функции:

    • или или скоростная сила (в которой отдельно выделяют )

    Многие факторы способствуют мышц человека, и не все они связаны с мускулатурой. К примеру, если у вас короткие конечности (руки и ноги), то это может помочь вам в выполнении определенных силовых задач, потому что таким образом расстояние переноса груза будет меньше. Например, длинные ноги и руки ставят в невыгодное положение, когда выполняется или (но, эти свойства помогают при выполнении становой тяги).

    Для повышения силовых показателей активно применяется , и .

    Два основных свойства , от которых зависит сила мышц, - это площадь поперечного сечения мускулов и нервно-мышечная эффективность. Площадь поперечного сечения мускулов отвечает за плотность мускулов. Обычно чем плотнее становится мускул, тем он способен проявить больше силы. Отчасти это из-за того, что у более плотных мускулов более плотное мышечное волокно, а в более плотных мышечных волокнах обычно содержится больше сократительного белка, который представляет собой основной механизм сокращения мышц. Увеличивать количество сократительного белка в мышечных волокнах - это все равно что добавлять еще одного человека со своей стороны при перетягивании каната.

    Нервно-мышечная эффективность - в широком смысле это понятие приводит нас к пониманию сочетания мыслительных процессов и мышечной силы. Любое сокращение мышц начинается с мозга. Та часть в вашей голове, которая называется «двигательный центр», посылает электрический сигнал по позвоночнику и дальше по двигательным нервам в мышечные волокна, благодаря чему они начинают сокращаться. Спортивные тренировки ведут к таким изменениям в системе, которые дают возможность мускулам сокращаться быстрее, используя больше силы и более эффективно. Если вы представите ваш мозг в роли сержанта-инструктора по строевой подготовке, который отдает приказания взводу мышечных волокон, чтобы они начали сокращаться, то для вас подобный взгляд может оказать влияние, подобное увеличению громкости команд от шепота до крика.

    Развитие нервно-мышечной активности происходит независимо от . Вот почему вы никогда не можете сказать наверняка, насколько силен какой-либо человек, руководствуясь размером его мышц. Человек с относительно небольшими мускулами и высоким уровнем нервно-мышечной активности с большей вероятностью сможет победить человека с большими мускулами и низким уровнем нервно-мышечной активности.

    В идеале тренировки на увеличение площади поперечного сечения мускулов отличаются от тренировок на повышение нервно-мышечной активности. Если вы новичок, то, скорее всего, вы не заметите этой разницы и любой вид тренировок поможет вам как увеличить размеры мускулов, так и повысить нервно-мышечную активность. Увеличивая количество упражнений или вес штанги, вы продолжите развивать площадь поперечного сечения ваших мускулов, а также повышать нервно-мышечную активность. Хотя, становясь более опытным, вы придете к выводу, что это просто невозможно найти такой вид тренировок, который бы увеличил размеры и силу мускулов одновременно. На самом деле вы не можете увеличить количество упражнений и вес штанги одновременно. Если вы хотите увеличить объем ваших тренировок, вам неминуемо придется ограничить количество веса, который вы поднимаете, таким образом, ваши мускулы не станут изнуренными очень быстро. Но если вы решите увеличить вес, который вы поднимаете, то вам нужно ограничить объем тренировок, потому что поднятие (работа) с очень тяжелым весом утомляет мускулы.

    Поднимать очень тяжелые грузы - это наиболее эффективный способ увеличить нервно-мышечную активность. Поэтому если вы предпочтете увеличить количество упражнений вместо весов, с которыми вы их выполняете, вы, вероятнее всего, придете к такому состоянию, когда количество упражнений, которые вы выполняете для того, чтобы увеличить размеры своих мускулов, выполняются за счет вашей нервно-мышечной активности, а сила мышц вообще перестает развиваться. Хотя если вашей целью является повышение максимальной силы мышц настолько, насколько это возможно, то вам нужно тренироваться таким способом, который бы сбалансировал рост мышц и развитие нервно-мышечной активности.

    Оценка максимальной, максимальной произвольной, абсолютной и относительной силы мышц

    Сила - это способность мышц преодолевать внешнее сопротивление или противодействовать ему за счет мышечных усилий. Она проявляется в таких основных формах: максимальная мышечная сила (абсолютная и относительная), скоростная (динамическая), статическая (изометрическая) сила и силовая выносливость (Аганянц, 2001; Остапенко, 2002; Спортивная физиология, 1986).

    Под максимальной силой подразумевают наибольшую возможность, которую спортсмен способен проявить при максимальном произвольном мышечном сокращении. Максимальная сила мышцы зависит от количества и толщины ее мышечных волокон. Количество и толщина мышечных волокон определяют толщину мышцы в целом -анатомический поперечник , то есть площадь поперечного сечения .

    Отношение значения максимальной силы мышцы к его анатомическому поперечнику называют относительной силой мышцы . Поперечное сечение мышцы, перпендикулярное направлению ее волокон, составляет ее физиологический поперечник . Для мышц с параллельным направлением волокон физиологический поперечник совпадает с анатомическим. Отношение максимальной силы мышцы к ее физиологическому поперечнику называют абсолютной силой мышцы.

    Скоростная сила (взрывная) - это способность проявлять самую большую силу в самое короткое время.

    Это способность мышцы или мышечной группы противостоять утомлению во время многократных мышечных сокращений.

    Для развития силы существуют определенные возрастные периоды, когда благоприятными являются морфологические и функциональные предпосылки: у девочек-9-11 лет, а у мальчиков прослеживаются два периода - 9-12 лет и 14-17 лет (Апанасенко, 1985; Виксне, 1989; Ермолаев, 2001; Фомин, Вавилов, 1991).

    Различают максимальную статическую и максимальную динамическую силу. Максимальная статическая сила проявляется во время изометрического сокращения мышц. Условия проявления максимальной статической силы таковы:

    • активация всех двигательных единиц;
    • сокращение мышц при условии полного тетануса;
    • сокращение мышц в состоянии покоя;
    • мобилизация деятельности симпатической нервной системы и др.

    Максимальная динамическая сила - это сила, проявляемая спортсменом во время максимального произвольного сокращения мышц без учета времени и массы собственного тела. обеспечивается в основном:

    • частотой импульсации в начале сокращения и синхронизацией импульсации различных мотонейронов (внутримышечная координация);
    • сократительными свойствами мышц (внутримышечная координация);
    • степенью гипертрофии быстросокращающихся мышечных волокон и др.

    Тренировочные занятия силовой направленности стимулируют (увеличение обхвата мышц) саркоплазматическую и миофибриллярную (Спортивная фармакология, 1986; Солодков, Сологуб, 2003). Саркоплазматическая гипертрофия обусловлена увеличением объема саркоплазмы, содержания в ней митохондриальных белков, метаболических резервов, миоглобина, количества капилляров. К таким превращениям наиболее склонны медленные мышечные волокна и быстрые - окисляемые. Такой тип гипертрофии мало влияет на прирост силы, но повышает способность к продолжительной работе (выносливость).

    Миофибриллярная гипертрофия обусловлена увеличением объема миофибрил за счет актомиозина.. При этом значительно повышается сила. Большую роль в активизации синтеза белка и нуклеиновых кислот играют и гормоны коры , а также средства с . Во всех случаях развиваются эти два типа гипертрофии с преобладающим развитием одного из них.

    Тестирование

    Оснащение : кистевой и становой динамометры.

    • Оценку максимальной мышечной силы проводят при помощи разных динамометров. Кистевой динамометр (динамометр Коллина) используют для измерения силы мышц предплечья и кисти. Становой динамометр используют для регистрации силы мышц-разгибателей туловища.

    Все испытуемые проводят измерения силы мышц предплечья и кисти, а также силу мышц-разгибателей туловища по два-три раза и записывают самый лучший результат. Следует помнить, что становая сила не исследуется в случае боли в пояснице, повреждении мышц живота, спины; у женщин - в период менструации и беременности.

    В висе поднимание ног вперед (количество раз за 10 с).

    • Оценку силовой выносливости мышц рук и пояса верхних конечностей испытуемых можно провести во время выполнения или сгибания и разгибания рук в упоре на брусьях. Для мышц живота используют поднимание и опускание туловища из положения лежа на спине, а для мышц ног- приседания.

    Полученные данные заносят в таблицу 27, сравнивают и делают выводы о силовых возможностях всех испытуемых.

    Таблица 27 - Определение силовых возможностей



  • Разделы сайта