Какая скорость называется мгновенной. Мгновенная скорость движения. Мгновенная скорость точки в момент

2.2 Средняя и мгновенная скорость при движении точки по прямой

Как мы уже отмечали, равномерное движение является простейшей моделью механического движения. Если такая модель неприменима, то необходимо использовать более сложные модели. Для их построение нам необходимо рассмотреть понятие скорости в случае неравномерного движения.

Пусть за интервал времени от t 0 до t 1 координата точки изменилась от x 0 до x 1 . Если мы вычислим скорость по прежнему правилу

\(~\upsilon_{cp} = \frac{\Delta x}{\Delta t} = \frac{x_1 - x_0}{t_1 - t_0} \) , (1)

то получим величину (она называется средней скоростью ), которая описывает быстроту движения «в среднем» - вполне возможно, что за первую половину времени движения точка сместилась на большее расстояние, чем за вторую.

Средней скоростью называется физическая величина равная отношению изменения координаты точки к интервалу времени, в течение которого это изменение произошло.

Геометрический смысл средней скорости - коэффициент наклона секущей AB графика закона движения.

Для более детального, более точного описания движения, можно задать два значения средней скорости – за первую половину времени движения υ ср1 , за вторую половину - υ ср2 .Если и такая точность нас не устраивает - то необходимо дробить временные интервалы дальше - на четыре, восемь и т.д. частей. При этом необходимо задавать соответственно четыре, восемь и т.д. значений средних скоростей. Согласитесь, такое описание становится громоздким и неудобным. Выход из этой ситуации давно найден - он заключается в том, что бы рассматривать скорость как функцию времени.

Давайте посмотрим, как будет меняться средняя скорость при уменьшении промежутка времени, за который мы эту скорость вычисляем. На рис.6 показан график зависимости координаты материальной точки от времени. Будем вычислять среднюю скорость за интервал времени от t 0 до t 1 , последовательно приближая значение t 1 к t 0 . При этом семейство секущих A 0 A 1 , A 0 A 1 ’, A 0 A 1 ’’ (рис.6), будет стремиться к некоторому предельному положению прямой A 0 B , которая является касательной к графику закона движения. Мы приводим два различных случая, чтобы показать, что мгновенная скорость может быть как больше, так и меньше средней скорости. Эту процедуру можно описать и алгебраически, последовательно вычисляя отношения \(~\upsilon_{cp} = \frac{x_1 - x_0}{t_1 - t_0}\) , \(~\upsilon"_{cp} = \frac{x"_1 - x_0}{t"_1 - t_0}\) , \(~\upsilon""_{cp} = \frac{x""_1 - x_0}{t""_1 - t_0}\) . При этом оказывается, что эти величины приближаются к некоторому вполне определенному значению. Это предельное значение получило название мгновенной скорости .

Мгновенной скоростью называется отношение изменения координаты точки к интервалу времени, за которое это изменение произошло, при интервале времени, стремящемся к нулю :

\(~\upsilon = \frac{\Delta x}{\Delta t}\) , при Δt → 0 . (2)

Геометрический смысл мгновенной скорости - коэффициент наклона касательной к графику закона движения.

Таким образом, мы «привязали» значение мгновенной скорости к конкретному моменту времени - задали значение скорости в данный момент времени, в данной точке пространства. Тем самым у нас появилась возможность рассматривать скорость тела как функцию времени, или функцию координаты.

С математической точки зрения это гораздо удобней, чем задавать значения средних скоростей на многих малых временных промежутках. Однако давайте задумаемся, а имеет ли физический смысл скорость в данный момент времени? Скорость - характеристика движения, в данном случае перемещения тела в пространстве. Для того чтобы зафиксировать перемещение необходимо наблюдать за движением в течение некоторого промежутка времени. Чтобы измерить скорость, также необходим промежуток времени. Даже самые совершенные измерители скорости радарные установки измеряют скорость движущихся автомобилей пусть за малый (порядка одной миллионной доли секунды) промежуток времени, а не в какой-то момент времени. Следовательно, выражение «скорость в данный момент времени» с точки зрения физики некорректно. Тем не менее, в механике постоянно пользуются понятием мгновенной скорости, которое очень удобно в математических расчетах. Математически, логически мы можем рассмотреть предельный переход Δt → 0, а физически имеется минимально возможное значение промежутка Δt , за который можно измерить скорость.

В дальнейшем, говоря о скорости, мы будем иметь в виду именно мгновенную скорость. Заметим, при равномерном движении мгновенная скорость равна ранее определенной скорости, потому, что при равномерном движении отношение \(~\frac{\Delta x}{\Delta t}\) не зависит от величины промежутка времени, поэтому остается неизменным и при сколь угодно малом Δt .

Так как скорость может зависеть от времени, то ее следует рассматривать как функцию времени, и изображать ее в виде графика.

Уменьшая неограниченно промежуток времени t, за который произошло перемещение м. т. в пространстве в пределе, когда t  0, получим мгновенную скорость, т. е.

Вектор мгновенной скорости равен пределу отношения приращения радиус-вектора м. т. к тому промежутку времени, за которое это приращение произошло, когда t 0 или равен первой производной радиус-вектора по времени.

Вектор мгновенной скорости в данный момент времени направлен по касательной к траектории в данной точке (рис. 9).

Действительно, при t  0, когда точка М 2 приближается к М 1 , хорда (секущая) , сближается с длиной отрезка дугиs и в пределе s = , а секущая переходит в касательную. Это наглядно подтверждается опытами. Например, искры при заточке инструмента всегда направлены по касательной к точильному кругу. Поскольку, скорость – величина векторная, то модуль ее

.

В некоторых типах ускорителей (например, циклотронах и др.) частицы многократно движутся по замкнутой траектории без остановки. Следовательно, в любой точке траектории модуль вектора мгновенной скорости должен отличаться от нуля. Это заключение подтверждается не только уравнением (15), но и согласуется с понятием средней скалярной скорости (формула 11). Если в уравнении (11) перейти к пределу при t  0, то придется рассматривать такие малые участки пути на траектории s, которые не отличаются от модуля элементарного вектора перемещения . Тогда на основании уравнения (11) можно получить значение мгновенной скалярной скорости

совпадающее с модулем вектора мгновенной скорости
,

так как r = s при t  0.

Одно уравнение вектора мгновенной скорости (15) можно заменить эквивалентной системой трех скалярных уравнений, проекций вектора скорости на оси координат

v x = dx/dt, v y = dy/dt, v z = dz/dt. (16)

Вектор мгновенной скорости связан с его проекциями на оси координат выражением

, (17)

где
– единичные векторы, направленные вдоль осей Х, У,Z соответственно.

По модулю

. (18)

Таким образом, вектор скорости характеризует быстроту изменения перемещения в пространстве по величине и направлению с течением времени. Скорость – функция времени.

1.12. Среднее ускорение

При движении тел скорость в общем случае может изменяться как по величине, так и по направлению.

Примерами такого движения являются движение Солнечной системы вокруг центра нашей Галактики или движение поезда при торможении и т. д. Равномерное движение м. т. по окружности является примером, когда ее скорость изменяется по направлению, оставаясь постоянной по величине. Если м. т. движется по некоторой траектории, изменяя величину и направление скорости, то для характеристики ее движения уже недостаточно знать перемещение и скорость, нужно знать еще и быстроту изменения скорости, т. е. ускорение .

Пусть м. т. в некоторый момент времени t 1 находится в пункте М 1 и движется со скоростью , а в момент времени t 2 – в пункте М 2 – со скоростью (рис. 10).

Перенесем вектор параллельно самому себе в точку М 1 так, чтобы совпали начала векторов и.

Тогда разность векторов иесть вектор изменения (приращения) скорости за промежуток времениt = t 2 – t 1 , т. е.

. (19)

Вектор среднего ускорения равен отношению вектора изменения скорости к промежутку времени, за которое это изменение произошло.

Следовательно,

. (20)

Вектор среднего ускорения совпадает с направлением вектора изменения скорости и, направлен внутрь кривизны траектории.

Одному векторному уравнению (1.20) соответствует система из трех скалярных уравнений для проекций вектора среднего ускорения на оси координат

Модуль вектора среднего ускорения

. (22)

За единицу измерения ускорения в СИ принят метр на секунду в квадрате.

Мгновенная скорость движения.

Обратимся теперь к задаче, известной вам из физики. Рассмотрим движение точки по прямой. Пусть координата х точки в момент времени t равна x(t). Как и в курсе физики, предполагаем, что движение осуществляется непрерывно и плавно. Иными словами, речь идет о движениях, наблюдаемых в реальной жизни. Для определенности будем считать, что речь идет о движении автомобиля по прямолинейному участку шоссе.

Поставим задачу: по известной зависимости x(t) определить скорость, с которой движется автомобиль в момент времени t (как вы знаете, эта скорость называется мгновенной скоростью ). Если зависимость х(t) линейна, ответ прост: в любой момент времени скорость есть отношение пройденного пути ко времени. Если движение не равномерно, задача сложнее.

Тот факт, что в любой момент времени автомобиль движется с какой-то определенной (для этого момента) скоростью, очевиден Эту скорость легко найти, сделав в момент времени t 0 фотоснимок спидометра. (Показание спидометра указывает значение мгновенной скорости в момент t). Чтобы найти скорость v мгн (t 0), зная х(t), на уроках физики вы поступали следующим образом

Средняя скорость за промежуток времени длительностью |Δt| от t 0 до t 0 + Δt следующая:

Как мы предположили, тело движется плавно. Поэтому естественно полагать: если?t очень мало, то за этот промежуток времени скорость практически не меняется. Но тогда средняя скорость (на этом промежутке) практически не отличается от значения v мгн (t 0), которое мы ищем. Это подсказывает следующий способ определения мгновенной скорости: найти v ср (Δt) и посмотреть, к какому значению оно близко, если считать, что Δt практически не отличается от нуля.

Рассмотрим конкретный пример. Найдем мгновенную скорость тела, брошенного вверх со скоростью V 0 . Высота его в момент t находится по известной формуле

1) Найдем сначала Δh:

3) Будем теперь уменьшать Δt, приближая его к нулю. Для краткости говорят, что Δt стремится к нулю. Это записывается так: Δt → 0 Как легко понять, в этом случае значение -gΔt/2 тоже стремится к нулю, т. е.

А поскольку величины V 0 и –gt 0 , а значит, и V 0 -gt 0 постоянны, из формулы (1) получаем:

Итак, мгновенная скорость точки в момент времени t 0 находится по формуле

К примеру, автомобиль, который трогается с места, движется ускоренно, так как наращивает скорость движения. В точке начала движения скорость автомобиля равняется нулю. Начав движение, автомобиль разгоняется до некоторой скорости. При необходимости затормозить, автомобиль не сможет остановиться мгновенно, а за какое-то время. То есть скорость автомобиля будет стремиться к нулю - автомобиль начнет двигаться замедленно до тех пор, пока не остановится полностью. Но физика не имеет термина «замедление». Если тело двигается, уменьшая скорость, этот процесс тоже называется ускорением , но со знаком «-».

Средним ускорением называется отношение изменения скорости к промежутку времени, за который это изменении произошло. Вычисляют среднее ускорение при помощи формулы:

где - это . Направление вектора ускорения такое же, как у направления изменения скорости Δ = - 0

где 0 является начальной скоростью. В момент времени t 1 (см. рис. ниже) у тела 0 . В момент времени t 2 тело имеет скорость . Исходя из правила вычитания векторов, определим вектор изменения скорости Δ = - 0 . Отсюда вычисляем ускорение:

.

В системе СИ единицей ускорения называется 1 метр в секунду за секунду (либо метр на секунду в квадрате):

.

Метр на секунду в квадрате - это ускорение прямолинейно движущейся точки, при котором за 1 с скорость этой точки растет на 1 м/с. Другими словами, ускорение определяет степень изменения скорости тела за 1 с. К примеру, если ускорение составляет 5 м/с 2 , значит, скорость тела ежесекундно растет на 5 м/с.

Мгновенное ускорение тела (материальной точки) в данный момент времени - это физическая величина , которая равна пределу, к которому стремится среднее ускорение при стремлении промежутка времени к 0. Другими словами - это ускорение, развиваемое телом за очень маленький отрезок времени:

.

Ускорение имеет такое же направление, как и изменение скорости Δ в крайне маленьких промежутках времени, за которые скорость изменяется. Вектор ускорения можно задать при помощи проекций на соответствующие оси координат в заданной системе отсчета (проекциями а Х, a Y , a Z).

При ускоренном прямолинейном движении скорость тела увеличивается по модулю, т.е. v 2 > v 1 , а вектор ускорения имеет такое же направление, как и у вектора скорости 2 .

Если скорость тела по модулю уменьшается (v 2 < v 1), значит, у вектора ускорения направление противоположно направлению вектора скорости 2 . Другими словами, в таком случае наблюдаем замедление движения (ускорение отрицательно, а < 0). На рисунке ниже изображено направление векторов ускорения при прямолинейном движении тела для случая ускорения и замедления.

Если происходит движение по криволинейной траектории, то изменяется модуль и направление скорости. Значит, вектор ускорения изображают в виде 2х составляющих.

Тангенциальным (касательным) ускорением называют ту составляющую вектора ускорения, которая направлена по касательной к траектории в данной точке траектории движения. Тангенциальное ускорение описывает степень изменения скорости по модулю при совершении криволинейного движения.


У вектора тангенциального ускорения τ (см. рис. выше) направление такое же, как и у линейной скорости либо противоположно ему. Т.е. вектор тангенциального ускорения находится в одной оси с касательной окружности, являющейся траекторией движения тела.



  • Разделы сайта