Искусственные мышцы своими руками. Искусственная мышца. Как изготовить искусственные мышцы из рыболовной лески

Разработана технология создания недорогих искусственных мышц на основе жесткого каркаса, заключенного в мягкую камеру. Мышцы сокращаются за счет уменьшения в них давления, причем их можно создавать, используя разные материалы. Статья опубликована в журнале Proceedings of the National Academy of Sciences .

Инженеры, разрабатывающие роботов, нередко используют в своих изобретениях конструкции, напоминающие по функциям живых существ. Несмотря на это, для движения роботы все равно чаще всего используют электромоторы или двигатели внутреннего сгорания, соединенные со сложными механическими передачами. Некоторые исследователи придерживаются другого подхода и разрабатывают источники движения, более близкие по своему устройству к мышцам. Уже существует немало прототипов искусственных мышц, которые могут сокращаться подобно настоящим мышцам, но почти все они требуют дорогих материалов и технологических процессов, при этом эффективность многих из них все еще низка.

Исследователи под руководством Роберта Вуда (Robert Wood) из Гарвардского университета разработали простую и недорогую технологию создания эффективных искусственных мышц, которые можно создавать из большого количества разных материалов. Принципиальная схема создания таких актуаторов довольно проста. В качестве основы используется каркас заданной формы, который может складываться и раскладываться. Затем вокруг этого каркаса склеиваются или сплавляются два фрагмента пленки из полимера или другого воздухонепроницаемого и мягкого материала. Таким образом формируется мягкая камера с жестким каркасом внутри, которая подключается к источнику разницы давления.


Принцип действия искусственных мышц

Shuguang Li et al. / PNAS, 2017

Управление актуатором происходит за счет уменьшения или увеличения давления жидкости или газа внутри камеры. В результате актуатор начинает менять форму: складываться или наоборот увеличиваться в размерах, а в случае с каркасом сложной формы, совершать другие движения - например, изгибаться в определенную сторону.


Пример захватывающего устройства

Shuguang Li et al. / PNAS, 2017

С помощью такой технологии исследователи создали несколько прототипов актуаторов, и измерили их эффективность. Один из этих прототипов, представляющий собой десятисантиметровый линейный актуатор весом менее трех грамм, смог поднять груз массой более трех килограмм. Исследователи подсчитали, что пиковая мощность таких актуаторов составляет около двух киловатт на килограмм массы, что делает их мощнее настоящих скелетных мышц млекопитающих.

Ранее ученые представляли множество прототипов искусственных мышц, работающих на основе разных принципов. Некоторые также работают за счет давления, например, основную часть которой занимает полимерная пена, покрытая силиконом, а также мягкие вакуумные из множества полых ячеек. Другие используют для своей работы нагревание: таким образом работают на основе нейлоновой лески и недавно представленный , наполненный пузырьками с этанолом, который при нагревании превращается в газ и расширяется. Помимо этого недавно был представлен из множества слоев двумерного материала, который расширяется при внедрении в него сторонних ионов. Кстати, не всегда искусственные мышцы сделаны полностью из искусственных материалов. Тайваньские ученые мышцы из тонкой пленки из кожицы лука, которая сокращается под действием электричества.

Григорий Копиев

Современные роботы могут многое. Но при этом им далеко до человеческой легкости и грациозности движений. И вина тому - несовершенные искусственные мышцы. Ученые многих стран стараются решить эту проблему. Статья будет посвящена краткому обзору их удивительных изобретений.

Полимерные мышцы от сингапурских ученых

Шаг к более недавно сделали изобретатели из Национального Сегодня андроиды-тяжеловесы двигаются за счет работы гидравлических систем. Существенный минус последних - небольшая скорость. Искусственные же мышцы для роботов, представленные сингапурскими учеными, позволяют киборгам не только поднимать предметы, которые в 80 раз тяжелее их собственного веса, но и делать это так же быстро, как и человек.

Инновационная разработка, растягивающаяся в длину в пять раз, помогает "обойти" роботам даже муравьев, которые, как известно, могут переносить предметы в 20 раз тяжелее веса их собственного тельца. Полимерные мышцы обладают следующими достоинствами:

  • гибкостью;
  • поражающей прочностью;
  • эластичностью;
  • способностью менять свою форму за несколько секунд;
  • возможностью преобразовывать кинетическую энергию в электрическую.

Однако на этом ученые не собираются останавливаться - в их планах создать искусственную мускулатуру, которая бы позволила роботу поднимать груз, в 500 раз тяжелее его самого!

Открытие из Гарварда - мышцы из электродов и эластомера

Изобретатели, которые трудятся в Школе прикладных и инженерных наук Гарвардского университета, представили качественно новые искусственные мышцы для так называемых "мягких" роботов. По словам ученых, их детище, состоящее из мягкого эластомера и электродов, в чьем составе углеродные нанотрубки, по своим качествам не уступает человеческой мускулатуре!

Все существующие на сегодня роботы, как уже говорилось, имеют в своей основе приводы, чей механизм - это гидравлика или пневматика. Такие системы работают за счет сжатого воздуха или реакции химических веществ. Это не позволяет сконструировать робота, такого же мягкого и быстрого, как человек. Гарвардские ученые устранили этот недостаток, создав качественно новый концепт искусственных мышц для роботов.

Новая "мускулатура" киборгов - многослойная структура, в которой электроды из нанотрубок, созданные в лаборатории Кларка, управляют верхними и нижними слоями гибких эластомеров, являющихся детищем ученых уже из Калифорнийского университета. Такие мышцы идеальны как для "мягких" андроидов, так и для лапароскопических инструментов в хирургии.

На этом замечательном изобретении гарвардские ученые не остановились. Одна из последних их разработок - это биоробот-скат. Его составляющие - клетки сердечных мышц крыс, золото и силикон.

Изобретение группы Баухмана: еще один вид искусственных мышц на основе углеродных нанотрубок

Еще в 1999 г. в австралийском городке Кирхберге на 13-й встрече Международной зимней школы по электронным свойствам инновационных материалов выступил с докладом ученый Рей Баухман, работающий в компании Allied Signal и возглавляющий международную исследовательскую группу. Его сообщение было на тему изготовления искусственных мышц.

Разработчики под началом Рэя Баухмана смогли представить в виде листов нанобумаги. Трубочки в этом изобретении были всячески переплетены и перепутаны между собой. Сама нанобумага своим видом напоминала обычную - ее возможно было держать в руках, разрезать на полосы и кусочки.

Эксперимент группы с виду был очень прост - ученые прикрепили кусочки нанобумаги к разным сторонам клейкой ленты и опустили эту конструкцию в соляной электропроводный раствор. После того как была включена слабовольтная батарея, обе нанополоски удлинились, особенно та, что была связана с отрицательным полюсом электробатареи; затем бумага изогнулась. Модель искусственной мышцы функционировала.

Сам Баухман считает, что его изобретение после качественной модернизации существенно преобразит роботехнику, ведь такие углеродные мышцы при сгибании/разгибании создают электрический потенциал - производят энергию. К тому же такая мускулатура раза в три сильнее человеческой, может функционировать при крайне высоких и низких температурах, используя для своей работы невысокую силу тока и напряжения. Вполне возможно ее применение и для протезирования человеческих мышц.

Техасский университет: искусственные мышцы из рыболовной лески и швейных ниток

Одной из самых поразительных является работа ученой группы из Техасского университета, который расположен в Далласе. Ей удалось получить модель искусственной мускулатуры, по своей силе и мощности напоминающей реактивный двигатель - 7,1 л.с./кг! Такие мышцы в сотни раз сильнее и продуктивнее человеческих. Но самое удивительное здесь то, что их сконструировали из примитивных материалов - высокопрочной лески из полимера и швейной нитки.

Питание такой мышцы - это перепад температур. Обеспечивает его швейная нить, покрытая тонким слоем металла. Однако в будущем мышцы роботов могут подпитываться от перепадов температур окружающей их среды. Это свойство, кстати, вполне можно применять для адаптирующейся к погоде одежды и других подобных устройств.

Если скручивать полимер в одну сторону, то он будет резко сжиматься при нагревании и быстро растягиваться при охлаждении, а если в другую - то в корне наоборот. Такая нехитрая конструкция может, например, вращать габаритный ротор со скоростью 10 тыс. оборотов/мин. Плюс таких искусственных мышц из лески в том, что они способны сокращаться до 50 % от своей исходной длины (человеческие только на 20 %). Кроме этого, их отличает удивительная выносливость - эта мускулатура не "устает" даже после миллионного повторения действия!

От Техаса до Амура

Открытие ученых из Далласа вдохновило немало ученых со всего мира. Успешно повторить их опыт, однако, удалось только одному роботехнику - Александру Николаевичу Семочкину, главе лаборатории информационных технологий при БГПУ.

Вначале изобретатель терпеливо ждал новых статей в Science о массовом внедрении в жизнь изобретения американских коллег. Так как этого не происходило, амурский ученый решил со своими единомышленниками повторить замечательный опыт и сотворить своими руками искусственные мышцы из медной проволоки и рыболовной лески. Но, увы, копия оказалась нежизнеспособной.

Большие мускулы - результат долгих лет усердных тренировок и литров пролитого пота. Но есть люди, которые считают, что могут добиться того же внешнего вида, что профессиональные атлеты, но гораздо быстрее и проще. Это действительно возможно, вопрос только в том, какой ценой?

Силиконовые мышцы

Первый способ обзавестись огромными мышцами без посещения тренажерного зала - лечь под нож хирурга. Современная хирургия дошла до того, что увеличивать можно уже не только грудь и губы, но и любую другую часть тела. И теперь не только женщины, но и мужчины активно вставляют себе силиконовые импланты, чтобы выглядеть привлекательнее.

Есть два способа вживления импланта - над мышцей и под мышцу. Первый вариант более простой, дешевый и не такой травмоопасный, но проблема в том, что такая мышца будет выглядеть неестественно и будет мягкой на ощупь. Во втором случае существующие мышцы буквально вскрываются и имплант засовывают под них, после чего мышечные ткани сшивают обратно. Такая операция очень сложная и опасная, а восстановление после нее займет долгие месяцы, зато результат будет качественнее - наличие импланта не будет заметно и мышца сохранит присущую ей твердость.

Вживление импланта - огромный риск, ведь тело может просто не принять его или ответить серьезной аллергической реакцией. Еще хуже могут быть последствия в результате повреждения импланта - можно вообще лишиться той части тела, куда была вживлена искусственная мышца.

Джастин Джедлика, Силиконовый Кен

Пожалуй, самым известным примером мужской пластической хирургии является американец Джастин Джедлика, он же Силиконовый Кен. Одержимый идеей быть похожим на друга куклы Барби, он перенес около 90 пластических операций общей стоимостью более 100 тысяч долларов. Больше всего изменений, конечно, претерпело лицо парня, однако и над рельефным телом постарались хирурги, вставив Джастину силиконовые импланты в грудь, руки, плечи и живот.

Пуш-ап

Да-да, мужской пуш-ап тоже существует. Он надевается под майку, застегивается на спине и имитирует рельефную грудь и пресс. Изобрели нехитрый заменитель мускулатуры в Японии, и в Азии он быстро приобрел популярность.

Синтол

Если к пластической хирургии мужчины пока обращаются редко, то еще более опасные химические способы искусственного увеличения мускулатуры применяются, к сожалению, гораздо чаще. Самый известный препарат - синтол, изобретенный в 1990-х годах и быстро ставший скандально известным. Синтол не обладает анаболическими свойствами, он увеличивает объем мышц за счет всасывания масел в мышечные волокна. То есть на самом деле мышцы не становятся больше, они просто набухают.

Выводится из организма синтол очень долго - до 5 лет. Кроме того, у него огромное количество побочных эффектов, многие из которых крайне опасны и грозят спортсменам тяжелыми последствиями, вплоть до летального исхода. Так, попадание масла в кровь может вызвать жировую эмболию, которая в свою очередь грозит инфарктом или инсультом. Среди других возможных проблем - различные инфекции, повреждения нервов, образование цист и язв.

Интернет пестрит многочисленными примерами «жертв» синтола, а легенды бодибилдинга активно выступают против таких методов увеличения мышц. «Мое отношение к синтолу такое же, как и ко всем имплантатам. Это попытка улучшить телосложение косметическими методами, избегая тяжелой работы, делающей бодибилдинг настоящим спортом», — заявлял шестикратный «Мистер Олимпия» Дориан Ятс.

Исследователи из Колумбийского университета в Нью-Йорке изобрели искусственные мышцы, способные поднимать грузы в тысячи раз тяжелее собственной массы. Методика изготовления настолько проста, а материалы настолько доступны, что заняться конструированием мягкой робототехники может любой желающий, особенно если в наличии имеется 3D-принтер.

Несмотря на сногсшибательные успехи , до настоящих «терминаторов» человечеству еще далеко. Алгоритмы постоянно совершенствуются, машины становятся все умнее – настолько, что искусственного интеллекта начинает побаиваться даже Илон Маск. А вдруг Теодор Качинский был прав? Но вот «железо» развивается куда более медленными темпами, чем «софт». Механические, пневматические и гидравлические актуаторы слишком сложны, да и зачастую ненадежны, материалы с эффектом памяти формы дороги и неэффективны, а электроактивные полимеры требуют относительно высоких энергетических затрат. Чем же приводить в движение андроидов будущего?

Свой вариант предложил доктор наук Аслан Мирийев, научный сотрудник лаборатории Creative Machines при Колумбийском университете. Идея заключается в изготовлении искусственных мышц из силиконовых эластомеров, насыщенных обычным питьевым спиртом. Этиловый спирт (хотя необязательно этиловый) играет ключевую роль, так как расширение и сокращение мышц происходит в результате перехода микрокапель этанола из жидкой фазы в газообразную и обратно. Достигается это за счет нагревания и охлаждения: испарение пойманного в силиконе спирта приводит к росту давления и, соответственно, расширению эластомерной конструкции.

Необходимая температура задается пронизывающим мышцу линейным или спиральным электрическим нагревательным элементом. При использовании этанола максимальный эффект достигается продолжительным нагреванием чуть выше точки кипения в 78,4°С. Насколько выше, зависит от состава используемого материала, ведь силикон будет сопротивляться расширению, а чем выше плотность материала, тем выше давление и температура кипения спирта. В своих опытах Аслан остановился на материале с 20-процентным содержанием этанола, как на оптимальном. Изготавливается смесь простым смешиванием силикона и этанола в необходимых пропорциях до равномерного распределения микропузырьков спирта. Затем смесь можно использовать для литья в формы или аддитивного производства методом робокастинга, то есть экструзионной 3D-печати, но без нагревания. Например, шприцевым экструдером. В ходе экспериментов искусственные мышцы продемонстрировали способность увеличиваться в объеме на 900% и выдерживать многократные нагрузки. Так, шестиграммовый образец тридцать раз подряд поднимал и опускал груз массой около шести килограммов, то есть в тысячу раз больше собственной! Максимальные же показатели и того выше: двухграммовый мускул осилил нагрузку в 12 кг, хотя и на пределе возможностей.

Пока все замечательно, но ведь мышцы должны сокращаться, а не расширяться? Ничего страшного. Рабочий вектор можно задавать оболочками, сдерживающими расширение в заданной плоскости. Например, бицепсы и трицепсы на иллюстрации выше заключены в сетку фиксированной длины, прикрепленную концами к плечу и предплечью. Диаметральное расширение приводит к продольному сокращению, как это происходит с настоящими мускулами. В этом примере использовались 13-граммовые мышцы, способные поднимать вес до одного килограмма при нагревании спиральным элементом из нихромовой проволоки под напряжением 30В с силой тока в 1,5А. Изгиб же можно задавать с помощью «пассивных» слоев из гибких материалов с относительно высоким сопротивлением на растяжение, наносимых на «внутреннюю» сторону деформируемого актуатора, как в примере с захватом на иллюстрации ниже.

Лабораторная стоимость изготовления таких мышц в пересчете на грамм не превышала трех центов. Для печати опытных конструкций из термопластов использовались настольные FDM 3D-принтеры Ultimaker, Ultimaker 2+ и Stratasys uPrint, тогда как печать непосредственно искусственных мышц осуществлялась на самодельном двухэкструдерном 3D-принтере, оснащенном шприцевыми головками. С полным докладом можно ознакомиться по этой ссылке .

А у вас есть интересные новости? Поделитесь с нами своими разработками, и мы расскажем о них всему миру!.

Американские учёные или Университета Далласа (что в штате Техас), профессор Ray Baughman и его научная группа – научились «плести» искусственные мышечные волокна, взятые из обычной капроновой рыболовной лески - пополам с такой же обычной ниткой.

Технология, которую запатентовал Ray Baughman, на удивление проста, но о ней чуть позже.

Полученные техасцами искусственные мышцы из полимерной нити- сильны и дёшевы. Учёные собираются использовать эти новые искусственные мышечные волокна для двух основных целей:

  • при строительстве роботов грузо-подъёмщиков,
  • и для создания экзоскелетов в самых различных сферах применения.

Искусственные мышечные волокна Ray Baughman из университета Далласа - по всем показателям - намного превосходят природные, человеческие.

Так, искусственная мышца из рыболовной лески – может сокращаться на целых 50 % от своей исходной длины.

Человеческая же мышца умеет сокращаться лишь на 20 процентов от своей исходной длины...

(Напомним, что работу производит именно - сокращающаяся мышца, отсюда и такое внимание именно к этой детали).

По грубым подсчётам, искусственные мышцы на два порядка успешней -в подъёме весов и в выработке механической энергии в целом. Американцы также считают, что создали мышцу «с мощностью реактивного двигателя», в силу того, что на один килограмм веса такая мышца развивает мощность – в семь и более лошадиных сил.

Искусственная мышца: Всё гениальное – просто

Полимерная нить, та, которая и идёт на изготовление лески для рыболовов, скручивается в спираль. Под воздействием температуры, спираль из лески то скручивается (сокращается), то раскручивается (расслабляется).

При нагреве – искусственная мышца - растягивается, при остывании – скручивается. И – наоборот.

Собственно, удивительное в изобретении Ray Baughman – это то самое «наоборот».

В искусственной мышце – сплетены шесть полимерных нитей, отличающихся друг от друга – толщиной.

Успешный эксперимент учёных показал, что углеродные нанотрубки (из которых раньше пытались делать искусственные мышцы) это тупиковый путь развития данной технологии. Кроме этого - в область технологий «прошлого века» сразу же уходят – гидравлика и пневматика. Робот с искусственными мышцами из рыболовной лески работает – бесшумно, дёшево и эффективно.

Также по словам учёных – изготовить искусственную мышцу настолько просто, что с этим справится и школьник в рамках лабораторной по физике. Нужно лишь иметь с собой – две канцелярские скрепки, дрель и … саму леску!

Добро пожаловать в век киборгов-силачей?..



  • Разделы сайта