Функциональные изменения организма при занятиях силовыми упражнениями. Функциональные изменения в организме при физических нагрузках

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Республики Казахстан

Восточно-Казахстанский гуманитарный колледж

Реферат на тему

«ФУНКЦИОНАЛЬНЫЕ ИЗМЕНЕНИЯ, ПРОИСХОДЯЩИЕ В ОРГАНИЗМЕ ПРИ ВОЗДЕЙСТВИИ ФИЗИЧЕСКИХ УПРАЖНЕНИЙ»

Выполнила

учащаяся группы 4-ин.яз.-1

Гуршал К.В

Проверил

Иванов В.С

г. Усть-Каменогорск 2008г.

1. ВВЕДЕНИЕ

Как вы думаете, если сравнить активных и неактивных людей, кто из них быстрее утомляется? Именно самые ленивые утомляются раньше всех. Итак, если вы чувствуете вялость, слабость, быстро утомляетесь - вам надо стать более активным! Но как выбрать физические упражнения, быстро дающие тонус, снимающие утомление, позволяющие трудиться с максимальной отдачей? Не будем распыляться, остановимся только на самом важном и самом необычном, ведь неизвестное может быть даже в известном... Еще в начале века выдающийся физиолог И.М. Сеченов установил, что во время труда и после него быстрее устраняет утомление не полный покой, а смена деятельности - активный отдых, т. е. физкультура. В 60-е годы киевский профессор И.В. Муравов установил «эффект погашения» утомления при выполнении движений ненагруженными мышцами. Оказалось, что это связано с возбуждением центров, бездействовавших во время работы, и более глубоким торможением утомленных центров. Отсюда нормализация функций нервной системы, кровообращения, дыхания, органов чувств. Получалось, что упражнение - универсальный стимулятор и восстановитель физической и умственной работоспособности.

физический тренировка двигательный упражнение

2. ВЛИЯНИЕ ФИЗИЧЕСКИХ УПРАЖНЕНИЙ НА РАЗВИТИЕ ОРГАНИЗМА

Необходимым условием гармоничного развития личности школьника является достаточная двигательная активность. Последние годы в силу высокой учебной нагрузки в школе и дома и других причин у большинства школьников отмечается дефицит в режиме дня, недостаточная двигательная активность, обусловливающая появление гипокинезии, которая может вызвать ряд серьёзных изменений в организме школьника.

Исследования гигиенистов свидетельствуют, что до 82 - 85% дневного времени большинство учащихся находится в статическом положении (сидя). Даже у младших школьников произвольная двигательная деятельность (ходьба, игры) занимает только 16 - 19% времени суток, из них на организованные формы физического воспитания приходится лишь 1-3 %. Общая двигательная активность детей с поступлением в школу падает почти на 50%, снижаясь от младших классов к старшим. Установлено, что двигательная активность в 9 -10 классе меньше, чем в 6- 7 классе; девочки делают в сутки меньше шагов, чем мальчики; двигательная активность в воскресные дни больше, чем в учебные. Отмечено изменение величины двигательной активности в разных учебных четвертях. Двигательная активность школьников особенно мала зимой; весной и осенью она возрастает.

Школьникам не только приходится ограничивать свою естественную двигательную активность, но и длительное время поддерживать неудобную для них статическую позу, сидя за партой или учебным столом.

Малоподвижное положение за партой или рабочим столом отражается на функционировании многих систем организма школьника, особенно сердечно-сосудистой и дыхательной. При длительном сидении дыхание становится менее глубоким обмен веществ понижается, происходит застой крови в нижних конечностях, что ведёт к снижению работоспособности всего организма и особенно мозга: снижается внимание, ослабляется память, нарушается координация движений, увеличивается время мыслительных операций.

Отрицательное последствие гипокинезии проявляется так же сопротивляемости молодого организма “простудным и инфекционным заболеваниям”, создаются предпосылки к формированию слабого, нетренированного сердца и связанного с этим дальнейшего развития недостаточности сердечно - сосудистой системы. Гипокинезия на фоне чрезмерного питания с большим избытком углеводов и жиров в дневном рационе может вести к ожирению.

У малоподвижных детей очень слабые мышцы. Они не в состоянии поддерживать тело в правильном положении, у них развивается плохая осанка, образуется сутулость.

В печати были опубликованы довольно интересные наблюдения влияния ограничения двигательной активности на физическое развитие молодого организма. Учёные установили, что 6 - 7 летние дети, уже принятые в школу, отстают в росте и массе тела и мозгов от сверстников, не посещающих учебные заведения. Разница к концу года оказывается значительной: у мальчиков различие в росте составляет 3,2 см. в массе тела 700 гр. А у девочек - соответственно 0,9 см. и 1 кг. 300 гр.

Единственная возможность нейтрализовать отрицательное явление, возникающее у школьников при продолжительном и напряжённом умственном труде, - это активный отдых от школы и организованная физическая деятельность.

Двигательный режим школьника складывается в основном из утренней физзарядки, подвижных игр на школьных переменах, уроках физической культуры, занятия в кружках и спортивных секциях, прогулок перед сном, активного отдых в выходные дни.

При систематических занятиях физической культурой и спортом происходит непрерывное совершенствование органов и систем организме человека. В этом главным образом и заключается положительное влияние физической культуры на укрепление здоровья.

Средние показатели роста и развития, а так же некоторые функциональные показатели у юных физкультурников значительно выше, чем у их сверстников, не занимающихся спортом: длинна тела юношей 16-17 лет больше на 5,7 - 6 см. , масса тела - на 8- 8,5 кг, а окружность грудной клетки на 2,5 - 5 см. , сила сжатия кисти руки - на 4,5 - 5,7 кг, жизненная ёмкость лёгких - на 0,5 - 1,4 литра.

В литературе описаны следующие наблюдения: у школьников не занимающихся физическими упражнениями становая сила в течении года увеличивалась на 8,7 кг.; у подростков того же возраста, занимавшихся физической культурой, - на13 кг., а у занимавшихся, кроме уроков физического воспитания, ещё и спортом на 23 кг. Наглядное объяснение этому даёт следующий эксперимент. При рассмотрении под микроскопом участка мышц животного было обнаружено, что в одном мм квадратном мышцы, находящейся в покое, насчитывается от 30 до60 капилляров. На этом же участке после усиленной физической работы мышцы насчитывалось до 30 000 капилляров то есть в десятки раз больше. Кроме того, каждый капилляр увеличился почти в 2 раза в диаметре. Это свидетельствует о том, что в состоянии покоя они не участвуют в кровообращении, а во время мышечной нагрузки капилляры наполняются кровью, способствуют поступлению в мышцы питательных веществ. Таким образом, обмен веществ при мышечной работе по сравнению с состоянием покоя возрастает во много раз.

Мышцы составляют от 40 до 56 % массы тела человека и врятли можно ожидать хорошего здоровья если добрая половина составляющих организм клеток не получают достаточного питания и не обладают хорошей работоспособностью.

Под влиянием мышечной деятельности происходит гармоничное развитие всех отделов центральной нервной системы. При этом важно, что физические нагрузки были систематическими, разнообразными и не вызывали переутомления. Высший отдел нервной системы поступают сигналы от органов чувств и от скелетных мышц. Кора головного мозга перерабатывает огромный поток информации и осуществляет точную регуляцию деятельности организма.

Физические упражнения благотворно влияют на развитие таких функций нервной системы как силы, подвижность и уравновешенность нервных процессов. Даже напряжённая умственная деятельность невозможна без движения. Вот ученик сел и задумался над сложной задачей и вдруг почувствовал потребность пройтись по комнате - так ему легче работать, думать. Если взглянуть на думающего школьника, видно, как собранно вся мускулатура его лица, рук тела. Умственный труд требует мобилизации мышечных усилий, так как сигналы от мышц активизируют деятельность мозга.

Ходьба оживляет и воодушевляет мои мысли. Оставаясь в покое, я почти не могу думать; необходимо, чтобы моё тело находилось в движении, и тогда ум тоже начинает двигаться”, - признание великого французского мыслителя Ж.Ж. Руссо как нельзя лучше показывает взаимосвязь мозга с движением.

Достаточная двигательная активность является необходимым условием гармонического развития личности.

Физические упражнения способствуют хорошей работе органов пищеварения, помогая перевариванию и усвоению пищи, активизируют деятельность печени и почек, улучшают желез внутренней секреции: щитовидной, половых, надпочечников, играющих огромную роль в росте и развитии молодого организма.

Под влиянием физических нагрузок увеличивается частота сердцебиения, мышца сердца сокращается сильнее, повышается выброс сердцем крови в магистральные сосуды. Постоянная тренировка системы кровообращения ведёт к её функциональному совершенствованию. Кроме того, во время работы в кровоток включается и та кровь, которая в спокойном состоянии не циркулирует по сосудам. Вовлечение в кровообращение большой массы крови не только тренирует сердце и сосуды, но и стимулирует кроветворение.

Физические упражнения вызывают повышенную потребность организма в кислороде. В результате чего увеличивается “жизненная ёмкость лёгких, улучшается подвижность грудной клетки. Кроме того, полное расправление лёгких ликвидирует застойные явления в них, скопление слизи и мокроты, т.е. служит профилактикой возможных заболеваний.

Лёгкие при систематических занятиях физическими упражнениями увеличиваются в объёме, дыхание становится более редким и глубоким, что имеет большое значение для вентиляции лёгких.

Занятие физическими упражнениями также вызывает положительные эмоции, бодрость, создаёт хорошее настроение. Поэтому становится понятным, почему человек, познавший “вкус” физических упражнений и спорта, стремится к регулярным занятием ими.

3. ВЛИЯНИЕ ФИЗИЧЕСКИХ УПРАЖНЕНИЙ НА КРОВЬ И КРОВООБРАЩЕНИЕ

Необходимость достаточно эффективной мышечной работы понятна из такого известного факта. Если, например, положить в гипс здоровую руку и долго ее там удерживать без движений, то спустя достаточно большой промежуток времени мышцы рук начнут слабеть, атрофироваться, произойдет постепенное рассасывание ее тканей, вплоть до полного отмирания конечностей. И это притом, что сосуды руки были целы, а сердце продолжало исправно работать. Поэтому мы еще раз убеждаемся, что каждая мышца является не только органом движения, но и активно обслуживает тот или иной участок системы кровообращения, жизнедеятельности организма в целом.

Откуда же тогда черпало силы такое стойкое убеждение, что сердце непременно ответственно за кровоснабжение всех тканей нашего тела, всех мышц (а их насчитывается более 600)? Надо полагать, что из наблюдений за определенной синхронностью работы мышц и сердца: когда начинаешь делать физические упражнения, то быстро подскакивает частота пульса, сердце бьется в 2-3 раза чаще, чем в спокойном состоянии.

Все объясняется просто: работающие мышцы требуют большого количества кислорода и скорейшего удаления из крови углекислоты. Эту функцию как раз выполняет сердце в малом круге кровообращения. Нагнетая кровь, сердце работает чаще, так как в легких отсутствует скелетная мышечная ткань.

Нет мышечной ткани и в головном мозгу. Возможно, поэтому мозг очень чувствителен к работе сердца и отмирает уже через 7 минут

Для успешной деятельности всех органов кровообращения нужны движения, труд, физкультура. Еще в XI веке великий таджикский философ, врач и ученый Абу Али Ибн-Сина (Авиценна) писал: «Если заниматься физическими упражнениями, то нет никакой нужды в употреблении лекарств, применяемых при разных болезнях, если в то же время соблюдать все прочие предписания нормального режима». Тренировка в значительной степени улучшает насосную функцию сердца. Один из важнейших эффектов тренировки - это замедление пульса в покое. Это является признаком более низкого потребления кислорода миокардом, т.е. усилением зашиты от ишемической болезни сердца. Адаптация периферического звена кровообращения включает целый ряд сосудистых и тканевых изменений. Мышечный кровоток при нагрузках значительно возрастает и может увеличиваться в 100 раз, что требует усиления работы сердца. В тренированных мышцах возрастает плотность капилляров. Увеличение артериовенозной разницы по кислороду происходит за счет возрастания мышечных митохондрий и количества капилляров, а также более эффективного шунтирования крови из неработающих мышц и органов брюшной полости. Повышается активность окислительных ферментов. Эти изменения снижают количество крови, требующейся мышцам при работе. Увеличение кислородотранспортной способности крови и способности эритроцитов отдавать кислород еще больше увеличивает артериовенозную разницу.

Таким образом, наиболее существенными изменениями при тренировке являются увеличение окислительного потенциала мышц и регионального кровотока, экономизация работы сердца в покое и при средних нагрузках.

В результате тренировок существенно уменьшается реакция артериального давления при различных нагрузках.

Важную защитную роль играет изменение фибринолитической активности (уменьшение вязкости) крови и уменьшение адгезии (деформации) тромбоцитов. При нагрузке повышается свертываемость крови, но одновременно снижается вязкость крови, что приводит к нормализации соотношения этих двух процессов. При нагрузках зарегистрировано 6-кратное повышение фибринолитической активности крови.

Суммируя имеющиеся сведения, можно сказать, что физическая активность:

· уменьшает риск развития ишемической болезни сердца, снижая работу

· сердца в покое, и потребность миокарда в кислороде;

· снижает артериальное давление,

· снижает частоту сердечных сокращений и склонность к аритмии.

· Одновременно увеличиваются:

· коронарный кровоток,

· эффективность периферического кровообращения,

· сократительная способность миокарда,

· объем циркулирующей крови и объем эритроцитов,

· устойчивость к стрессам.

Второй путь воздействия - это опосредованное влияние на факторы риска, такие, как избыточная масса тела, липидного (жирового) обмена, курение, употребление алкоголя.

Гипертоническая болезнь (ГБ) основным по значимости фактором риска среди болезней органов кровообращения. Предпосылкой для практического использования физических тренировок при ГБ является снижение артериального давления под влиянием систематических тренировок. Хорошо известен более низкий уровень АД у высококвалифицированных спортсменов. По данным наблюдений среди физически активных контингентов частота ГБ достоверно меньше, чем среди малоподвижных групп населения. Применяются различные тренировочные программы, но наиболее часто - динамические упражнения, в том числе ходьба, бег, велосипедные прогулки, т.е упражнения с участием больших групп мышц. В комплексные программы включаются и другие виды упражнений (общеразвивающие, гимнастические и др.), спортивные игры. Интенсивность, продолжительность и частота занятий, хотя и различаются, но обеспечивают тренирующее воздействие. Физкультурные занятия не следует проводить в период любых острых заболеваний, включая простудные, и в периоды обострения хронических заболеваний. Большое значение в процессе занятий придается самоконтролю.

Таким образом, систематическая двигательная активность, занятия физической культурой и спортом оказывают положительное воздействие на организм человека, в т.ч. органы кровообращения.

Кровеносные сосуды в процессе физической тренировки становятся более эластичными, артериальное давление держится в пределах нормы. Кроме того, физические упражнения развивают двигательную мускулатуру и тем самым улучшают обмен газов между вдыхаемым воздухом и кислородом.

Физические упражнения являются средством профилактики недугов, в том числе сердечно-сосудистых, в развитии которых не последнюю роль играет нетренированность сердца современного человека, лишившего себя оптимальной двигательной активности.

4. ИЗМЕНЕНИЕ МЫШЦ ПОД ВЛИЯНИЕМ ФИЗИЧЕСКОЙ НАГРУЗКИ

Мышечная ткань принимает участие во всех движениях, совершаемых человеком. Она способствуют продвижению крови по сосудам, пищи - по пищеварительному тракту, продуктов обмена - по мочевыводящим путям, секрета желез - по протокам и т.д.

В мышечной ткани имеются сократительные элементы клетки (миофибриллы), трофические (ядро и цитоплазма со всеми органоидами) и опорные (оболочка)Различают два вида мышечной ткани: гладкую и поперечно-полосатую, в последней, в свою очередь, выделяют скелетную и сердечную мышечную ткань.

Гладкая мышечная ткань - участвует в образовании стенки сосудов, внутренних органов радужной оболочки глаза.

Попречнополосатая сердечная мышечная ткань - может быть двух видов: одна обеспечивает сокращение сердца, вторая -- проведение нервных импульсов внутри сердца.

Поперечнополосатая скелетная мышечная ткань - характерна для всех мышц скелета, диафрагмы, языка, глотки, начального отдела пищевода, мышц приводящих в движение глазное яблоко, и др. Основной структурной функциональной единицей поперечнополосатой мышечной ткани является мышечное волокно. Длина мышечных волокон колеблется от нескольких миллиметров до 10 и более сантиметров. С поверхности мышечное волокно покрыто оболочкой (сарколеммой).

Сокращение поперечнополосатых мышц происходит быстро, вместе с тем они быстро, рано утомляются. При динамическом характере работы, когда периоды сокращения чередуются с периодами расслабления, длительность сокращения невелика, капилляры не сдавливаются, питание волокна не нарушается, поэтому и утомление мышц наступает медленнее. При статистической работе -- утомление наступает быстро.

Под влиянием нагрузки (двигательной деятельности) мышечные волокна утолщаются, увеличивается количество ядер. Имеются наблюдения, указывающие на то, что при этом может увеличиваться и число волокон.

В теле человека насчитывается около 600 мышц. Большинство из них парные и расположены симметрично по обеим сторонам тела человека. Мышцы составляют: у мужчин -- 42% веса тела, у женщин -- 35%, у спортсменов -- 45-52%.

По происхождению, строению и даже функции мышечная ткань неоднородна. Основным свойством мышечной ткани является способность к сокращению - напряжению составляющих ее элементов. Для обеспечения движения элементы мышечной ткани должны иметь вытянутую форму и фиксироваться на опорных образованиях (костях, хрящах, коже, волокнистой соединительной ткани и т.п.).

В различных видах спорта нагрузка на мышцы различна как по интенсивности, так и по объему, в ней могут преобладать статистические или динамические элементы. Она может быть связана с медленными или быстрыми движениями. В связи с этим и изменения, происходящие в мышцах, будут неодинаковы.

Как известно, спортивная тренировка увеличивает силу мышц, эластичность, характер проявления силы и другие их функциональные качества. Вместе с тем иногда, несмотря на регулярные тренировочные занятия, сила мышц начинает снижаться и спортсмен не может даже повторить свой прежний результат. Поэтому очень важно знать, какие изменения происходят в мышцах под влиянием физической нагрузки, какой двигательный режим спортсмену рекомендовать; должен ли спортсмен иметь полный покой (адинамию), перерыв в тренировочном процессе, или минимальный объем движений (гиподинамию), или наконец, проводить тренировки с постепенным уменьшением нагрузки.

Изменения в строении мышц у спортсменов можно определить методом биопсии (взятия особым способом кусочков мышц) в процессе тренировки. Эксперименты показали, что нагрузки преимущественно статистического характера ведут к значительному увеличению объема и веса мышц. Увеличивается поверхность их прикрепления на костях, укорачивается мышечная часть и удлиняется сухожильная. Происходит перестройка в расположении мышечных волокон в сторону более перистого строения. Количество плотной соединительной ткани в мышцах между мышечными пунктами увеличивается, что создает дополнительную опору. Кроме того, соединительная ткань по своим физическим качествам значительно противостоит растягиванию, уменьшая мышечное напряжение. Усиливается трофический аппарат мышечного волокна: ядра, саркоплазма, митохондрии. Миофибриллы (сократительный аппарат) в мышечном волокне располагаются рыхло, длительное сокращение мышечных пучков затрудняет внутриорганное кровообращение, усиленно развивается капиллярная сеть, она становится узкопетлистой, с неодинаковым просветом.

При нагрузках преимущественно динамического характера вес и объем мышц также увеличиваются, но в меньшей степени. Происходит удлинение мышечной части и укорочение сухожильной. Мышечные волокна располагаются более параллельно, по типу веретенообразных. Количество миофибрилл увеличивается, а саркоплазмы становится меньше.

Чередование сокращений и расслаблений мышцы не нарушает кровообращения в ней, количество капилляров увеличивается, ход их остается более прямолинейным.

Количество нервных волокон в мышцах, выполняющих преимущественно динамическую функцию, в 4--5 раз больше, чем в мышцах выполняющих преимущественно статистическую функцию. Двигательные бляшки вытягиваются вдоль волокна, контакт их с мышцей увеличивается, что обеспечивает лучшее поступление нервных импульсов в мышцу.

При пониженной нагрузке мышцы дряблыми, уменьшаются в объеме, капилляры их суживаются, в результате чего мышечные волокна истощаются, двигательные бляшки становятся меньших размеров. Длительная гиподинамия приводит к значительному снижению силы мышц.

При умеренных нагрузках мышцы увеличиваются в объеме, в них улучшается кровоснабжение, открываются резервные капилляры. По наблюдениям П.З. Гудзя, под влиянием систематической тренировки происходит рабочая гипертрофия мышц, которая является результатом утолщения мышечных волокон (гипертрофии), а также увеличения их количества (гиперплазии). Утолщение мышечных волокон сопровождается увеличением в них ядер, миофибрилл. Увеличение числа мышечных волокон происходит тремя путями: посредством расщепления гипертрофированных волокон на два--три и более тонких, вырастания новых мышечных волокон из мышечных почек, а также формирования мышечных волокон из клеток сателлитов, которые превращаются в миобласты, а затем в мышечные трубочки. Расщеплению мышечных волокон предшествует перестройка их моторной иннервации, в результате чего на гипертрофированных волокнах формируются одно--два дополнительных моторных нервных окончания. Благодаря этому после расщепления каждое новое мышечное волокно имеет собственную мышечную иннервацию. Кровоснабжение новых волокон осуществляется новообразующимися капиллярами, которые проникают в щели продольного деления. При явлениях хронического переутомления одновременно с возникновением новых мышечных волокон происходит распад и гибель уже имеющихся.

Важное практическое значение при перетренированности имеет двигательный режим. Установлено, что гиподинамия действует отрицательно на мышцы. При постепенном же уменьшении нагрузок нежелательных явлений в мышцах не возникает. Широкое применение метода динамометрии позволило установить силу отдельных групп мышц у спортсменов и составить как бы топографическую карту.

Так, в показателях силы мышц верхних конечностей (мышц--сгибателей и разгибателей предплечья, разгибателей плеча) явное преимущество имеют спортсмены, специализирующиеся в хоккее и ручном мяче, по сравнению с лыжниками--гонщиками, и велосипедистами. В силе мышц--сгибателей плеча заметно превосходство лыжников над гандболистами, хоккеистами и велосипедистами. Больших различий в силе мышц верхних конечностей между хоккеистами и гандболистами не наблюдается. Довольно четкие различия отмечаются в силе мышц--разгибателей, причем лучший показатель у хоккеистов (73кг), несколько хуже у гандболистов (69кг), лыжников (60кг) и велосипедистов (57кг). У не занимающихся спортом этот показатель составляет всего 48кг.

Показатели силы мышц нижних конечностей также различны у занимающихся различными видами спорта. Величина силы разгибателей голени больше у гандболистов (77кг) и хоккеистов (71кг), меньше у лыжников--гонщиков (64кг),еще меньше у велосипедистов (63кг). в силе мышц--разгибателей бедра большое преимущество у хоккеистов (177кг), тогда как у гандболистов, лыжников и велосипедистов существенных различий в силе этой группы мышц нет (139 -- 142кг).

Особенно интересны различия в силе мышц--сгибателей стопы и разгибателей туловища, способствующих в первом случае отталкиванию, а во втором -- удержанию позы. У хоккеистов показатели силы мышц--сгибателей стопы составляют 187кг, у велосипедистов -- 176кг, у гандболистов -- 146кг. Сила мышц--разгибателей туловища у гандболистов равна 184кг, у хоккеистов -- 177кг, а у велосипедистов -- 149кг.

В момент нанесения удара в боксе особая нагрузка падает на мышцы сгибатели кисти и пальцев, активное напряжение которых обеспечивает жесткость звена. Во время боя большую нагрузку в области туловища несут мышцы разгибатели позвоночного столба, при активном участии осуществляется нанесение различных видов ударов. В области нижних конечностей наиболее сильного развития у боксеров достигают сгибатели и разгибатели бедра, разгибатели голени и сгибатели стопы. В значительно меньшей степени развиты мышцы разгибатели предплечья и сгибатели плеч, сгибатели голени и разгибатели стопы. При этом при переходе от первой весовой группы к шестой увеличение силы наиболее сильных групп мышц происходит в большей степени, чем увеличение относительно «слабых», менее участвующих в движениях боксера, мышц.

Все эти особенности связаны с неодинаковым биохимическими условиями в работе двигательного аппарата и требованиями, предъявляемыми к нему в различных видах спорта. При тренировке начинающих спортсменов необходимо обращать особое внимание на развитие силы «ведущих» групп мышц.

5. ВЛИЯНИЕ ЗАНЯТИЙ СПОРТОМ НА СКЕЛЕТ

Под влиянием усиленной мышечной деятельности в скелете спортсмена происходят существенные изменения. На состояние скелета оказывают влияние и другие факторы, связанные с занятием спортом: характерное положение тела спортсмена (у велосипедистов, конькобежцев, боксеров, гребцов и т.д.), сила давления на скелет (у тяжелоатлетов), сила растяжения при висах, при скручивании тела (у акробатов, гимнастов, фигуристов и др.). При правильных дозированных нагрузках эти изменения обычно бывают благоприятными. В противном случае возможны патологические изменения скелета.

Наиболее простой механизм возникновения у спортсменов изменения скелета можно представить следующим образом. Под влиянием усиленной мышечной деятельности происходит рефлекторное расширение кровеносных сосудов, улучшается питание работающего органа, прежде всего мышц, а затем и близлежащих органов, в частности кости со всеми ее компонентами (надкостница, компактный слой, губчатое вещество, костномозговая полость, хрящи, покрывающие суставные поверхности костей и др.).

Все изменения в скелете появляются постепенно. Через год занятий спортом можно наблюдать отчетливо выраженные морфологические изменения костей. В дальнейшем эти изменения стабилизируются, но перестройка скелета происходит на протяжении всего тренировочного процесса. При прекращении активной спортивной деятельности приспособительные изменения костей остаются довольно продолжительное время.

Изменения, происходящие в скелете под влиянием занятий спортом, касаются и химического состава костей, и внутреннего их строения, и процессов роста и окостенения.

Кости, несущие большую нагрузку, богаче солями кальция, чем кости, несущие меньшую нагрузку. На рентгенограммах кости спортсменов имеют более четкий рисунок, чем кости не спортсменов, что объясняется большей оссификацией костной ткани, лучшим насыщением ее минеральными солями.

Под влиянием занятий спортом изменяется внешняя форма костей. Они становятся массивнее и толще за счет увеличения костной массы. Все выступы, гребни, шероховатости выражены резче. Эти изменения зависят от вида спорта. Так, у тяжелоатлетов кости массивнее, чем у пловцов, особенно в верхнем отделе скелета и верхних конечностях.

Изменение внутреннего состава кости под влиянием занятий спортом выражаются, в частности, в утолщении ее компактного вещества. Причем утолщение обычно больше в тех костях, на которые падает нагрузка. Но изменения компактного вещества также может происходить и без его утолщения, без изменения диаметра кости. В связи с утолщение компактного вещества костномозговая полость уменьшается. При больших статистических нагрузках она уменьшается почти до полного зарастания

Губчатое вещество кости также претерпевает определенные изменения. Под влиянием усиленной нагрузки на кость перекладины губчатого вещества становятся толще, крупнее, ячейки между ними больше (в старшем возрасте ячейки тоже становятся больше, но перекладины тоньше).

Переломы у спортсменов срастаются быстрее. Суставной хрящ, покрывающий суставные поверхности костей, может утолщаться, что усиливает его амортизационные свойства и уменьшает давление на кость. Оздоровительный и профилактический эффект физической культуры неразрывно связан с повышенной физической активностью, усилением функций опорно-двигательного аппарата, активизацией обмена веществ. Учение Р. Могендовича о моторно-висцеральных рефлексах показало взаимосвязь деятельности двигательного аппарата, скелетных мышц и вегетативных органов.

6. ОТРИЦАТЕЛЬНЫЕ ПОСЛЕДСТВИЯ ДЛЯ ОРГАНИЗМА ПРИ НЕДОСТАТОЧНО ИНТЕНСИВНОЙ ФИЗИЧЕСКОЙ ТРЕНИРОВКЕ

В результате недостаточной двигательной активности в организме человека нарушаются нервно-рефлекторные связи, заложенные природой и закреплённые в процессе тяжёлого физического труда, что приводит к расстройству регуляции деятельности сердечно-сосудистой и других систем, нарушению обмена веществ и развитию дегенеративных заболеваний (атеросклероз и др.).

Для нормального функционирования человеческого организма и сохранения здоровья необходима определённая «доза» двигательной активности. В этой связи возникает вопрос о так называемой привычной двигательной активности, т.е. деятельности, выполняемой в процессе повседневного профессионального труда и в быту. Наиболее адекватным выражением количества произведённой мышечной работы является величина энергозатрат. Минимальная величина суточных энергозатрат, необходимых для нормальной жизнедеятельности организма, составляет 12 - 16 МДж (в зависимости от возраста, пола и массы тела), что соответствует 2880 - 3840 ккал. Из них на мышечную деятельность должно расходоваться не менее 5 - 9 МДж (1200 - 1900 ккал); остальные энергозатраты поддерживают жизнедеятельность организма в состоянии покоя, нормальную деятельность систем дыхания и кровообращения, сопротивляемость организма.

В экономически развитых странах за последние 100 лет удельный вес мышечной работы как генератора энергии, используемой человеком, сократился почти в 200 раз, что привело к снижению энергозатрат на мышечную деятельность в среднем до 3,5 МДж. Дефицит энергозатрат, необходимых для нормальной жизнедеятельности организма, составил, таким образом, 2 - 3 МДж (500 - 750 ккал) в сутки. Интенсивность труда в условиях современного производства не превышает 2 - 3 ккал/мин, что в 3 раза ниже пороговой величины (7,5 ккал/мин), обеспечивающей оздоровительный и профилактический эффект. В связи с этим для компенсации недостатка энергозатрат в процессе трудовой деятельности современному человеку необходимо выполнять физические упражнения с расходом энергии не менее 350 - 500 ккал в сутки (или 2000 - 3000 ккал в неделю).

По данным Беккера, в настоящее время только 20% населения экономически развитых стран занимаются достаточно интенсивной физической тренировкой, обеспечивающей необходимый минимум энергозатрат, у остальных 80% суточный расход энергии значительно ниже уровня, необходимого для поддержания стабильного здоровья.

Резкое ограничение двигательной активности в последние десятилетия привело к снижению функциональных возможностей людей среднего возраста, поэтому так важны занятия физической культуры с раннего возраста и в подростковый период.

Таким образом, у большей части современного населения экономически развитых стран возникла реальная опасность развития гипокинезии, т.е. значительного снижения двигательной активности человека, приводящего к ухудшению реактивности организма и повышению эмоционального напряжения. Синдром, или гипокинетическая болезнь, представляет собой комплекс функциональных и органических изменений и болезненных симптомов, развивающихся в результате рассогласования деятельности отдельных систем и организмов в целом с внешней средой. В основе патогенеза этого состояния лежат нарушения энергетического и пластического обмена (прежде всего в мышечной системе).

Механизм защитного действия интенсивных физических упражнений заложен в генетическом коде человеческого организма. Скелетные мышцы в среднем составляющая 40% массы тела (у мужчин), генетически запрограммированы природой на тяжёлую физическую работу. «Двигательная активность принадлежит числу основных факторов, определяющих уровень обменных процессов организма и состояние его костной мышечной и сердечно-сосудистой систем», - писал академик В. В. Парин (1969). Мышцы человека являются мощным генератором энергии. Они посылают сильный поток нервных импульсов для поддержания оптимального тонуса ЦНС, облегчают движение венозной крови по сосудам к сердцу («мышечный насос»), создают необходимое напряжение для нормального функционирования двигательного аппарата. Согласно «энергетическому правилу скелетных мышц» И. А. Аршавского, энергетический потенциал организма и функциональное состояние всех органов и систем зависит от характера деятельности скелетных мышц. Чем интенсивнее двигательная активность в границах оптимальной зоны, тем полнее реализуется генетическая программа и увеличивается энергетический потенциал, функциональные ресурсы организмов и продолжительность жизни.

Различают общий и специальный эффекты физических упражнений, а также есть их опосредованное влияние на факторы риска.

Общий эффект физической тренировки заключается в расходе энергии, прямо пропорционально длительности и интенсивности мышечной деятельности, что позволяет компенсировать дефицит энергозатрат. Большое значение имеет также повышение устойчивости организма к действию неблагоприятных факторов внешней среды: стрессовых ситуаций, высоких и низких температур, радиации, травм и д.р. В результате повышения не специфического иммунитета повышается и устойчивость к простудным заболеваниям.

Специальный эффект оздоровительной тренировки связан с повышением функциональных возможностей сердечно-сосудистой системы. Он заключается в экономизации работы сердца в состоянии покоя и повышении резервных возможностей аппарата кровообращения при мышечной деятельности. Один из важнейших эффектов физической тренировки - урежение частоты сердечных сокращений (ЧСС) в покое (брадикардия) как проявления экономизации сердечной деятельности и более низкой потребности миокарда в кислороде. Увеличение продолжительности фазы диастолы (расслабления) обеспечивает больший кровоток и лучшее снабжение сердечной мышцы кислородом. У лиц с брадикардией случаи заболевания ИБС (ишемическая болезнь сердца) значительно реже, чем у людей с частым пульсом.

С ростом уровня тренированности потребность миокарда в кислороде снижается как в состоянии покоя, так и при субмаксимальных нагрузках, что свидетельствует об экономизации сердечной деятельности. Это обстоятельство является физиологическим обоснованием необходимости адекватной физической тренировки для больных ИБС, так, по мере роста тренированности и снижения потребности миокарда в кислороде повышается уровень пороговой нагрузки, которую испытуемый может выполнить без угрозы ишемии миокарда и приступа стенокардии (грудная жаба - наиболее распространённая форма ИБС, характеризующаяся приступами сжимающих загрудных болей). Наиболее выражено повышение резервных возможностей аппарата кровообращения при напряжённой мышечной деятельности: увеличение максимальной ЧСС, систолического и минутного объёма крови, артерио-венозной разницы по кислороду, снижение общего периферического сосудистого сопротивления (ОПСС), что облегчает механическую работу сердца и увеличивает его производительность.

Оценка функциональных резервов кровообращения при предельных физических нагрузках у лиц с различным уровнем физического состояния (УФС) показывает: люди со средним УФС (и ниже среднего) обладают минимальными функциональными возможностями, граничащими с патологией. Напротив, хорошо тренированные физкультурники с высоким УФС по всем параметрам соответствуют критериям физиологического здоровья, их физическая работоспособность достигает оптимальных величин или же превышает их.

Адаптация периферического звена кровообращения сводится к увеличению мышечного кровотока при предельных нагрузках (максимально в 100 раз) артерио-венозной разницы по кислороду, плотности капиллярного русла в работающих мышцах, росту концентрации миоглобина и повышению активности окислительных ферментов. Защитную роль в профилактике сердечно-сосудистых заболеваний играет также повышение фибринолитической активности крови при оздоровительной тренировке (максимум в 6 раз). В результате повышается устойчивость организма к стрессовым воздействиям. Помимо выраженного увеличения резервных возможностей организма под влиянием оздоровительной тренировки чрезвычайно важен также её профилактический эффект, связанный с опосредованным влиянием на факторы риска сердечно-сосудистых заболеваний. С ростом тренированности (по мере повышения уровня физической работоспособности) наблюдается отчётливое снижение всех основных факторов риска, содержания холестерина в крови, артериального давления и массы тела. Б. А. Пирогова (1985) в своих наблюдениях показала: по мере роста УФС содержание холестерина в крови снизилось с 280 до 210 мг, а триглицеридов со 168 до 150 мг %. Следует особо сказать о влиянии занятий оздоровительной физической культурой на стареющий организм.

Физическая культура является основным средством, задерживающим возрастное ухудшение физических качеств и снижение адаптационных способностей организма в целом и сердечно-сосудистой системы в частности, неизбежных в процессе инволюции. Возрастные изменения отражаются как на деятельности сердца, так и на состоянии периферических сосудов. С возрастом существенно снижается способность сердца к максимальным напряжениям, что проявляется в возрастном уменьшении максимальной частоты сердечных сокращений (хотя ЧСС в покое изменяется незначительно). С возрастом функциональные возможности сердца снижаются даже при отсутствии клинических признаков ИБС. Так, ударный объём сердца в покое в возрасте 25 лет к 85 годам уменьшается на 30%, развивается гипертрофия миокарда. Минутный объём крови в покое за указанный период уменьшается в среднем на 55 - 60%. Возрастное ограничение способности организма к увеличению ударного объёма и ЧСС при максимальных усилиях приводит к тому, что минутный объём крови при предельных нагрузках в возрасте 65 лет на 25 - 30% меньше, чем в возрасте 25 лет. С возрастом также происходят изменения в сосудистой системе, снижается эластичность крупных артерий, повышается общее периферическое сосудистое сопротивление. В результате, к 60 - 70 годам систолическое давление повышается на 10 - 40 мм рт. ст. Все эти изменения в системе кровообращения, снижение производительности сердца влекут за собой выраженное уменьшение максимальных аэробных возможностей организма, снижение уровня работоспособности и выносливости.

С возрастом ухудшаются и возможности дыхательной системы. Жизненная ёмкость лёгких (ЖЕЛ) начиная с 35-летнего возраста за год снижается в среднем на 7,5 мл на 1 м2 поверхности тела. Отмечено также снижение вентиляционной способности лёгких - уменьшение максимальной вентиляции лёгких. Хотя эти изменения не лимитируют аэробные возможности организма, однако они приводят к уменьшению жизненного индекса (отношение ЖЕЛ к массе тела, выраженное в мл/кг), который может прогнозировать продолжительность жизни.

Существенно изменяются и обменные процессы: уменьшается толерантность к глюкозе, повышается содержание общего холестерина и триглицеридов в крови, это характерно для развития атеросклероза (хроническое сердечно-сосудистое заболевание), ухудшается состояние опорно-двигательного аппарата: происходит разрежение костной ткани (остеопороз) вследствие потери солей кальция. Недостаточная двигательная активность и недостаток кальция в пище усугубляют эти изменения.

Адекватная физическая тренировка, занятия оздоровительной физической культурой способны в значительной степени приостановить возрастные изменения различных функций. В любом возрасте с помощью тренировки можно повысить аэробные возможности и уровень выносливости показателей биологического возраста организма и его жизнеспособности.

Например, у хорошо тренированных бегунов среднего возраста максимально возможная ЧСС примерно на 10 уд/мин больше, чем у неподготовленных.

1. Уровень и направленность двигательной активности формируют различные варианты функциональных систем.

2. Наблюдается относительная устойчивость показателей кардиореспираторной системы при нормировании двигательной активности.

3. Гипокинезия значительно ухудшает течение процессов адаптации (наличие дизадаптивных реакций гемодинамики, преобладание медленноволновых составляющих спектра, снижение активности антиоксидантных ферментов), что может приводить к развитию патологических процессов.

4. Объемные физические нагрузки ведут к повышенному расходованию микроэлемента магния, что требует его дополнительного введения в организм (рекомендуется использование препаратов панангин, аспаркам, компливит).

5. Концепция укрепления здоровья должна предусматривать формирование на индивидуальном уровне поведенческого стереотипа, направленного на повышение уровня двигательной активности учащихся, на общественном - создание центров здоровья непосредственно на базе образовательного учреждения.

ЗАКЛЮЧЕНИЕ

Таким образом, оздоровительный эффект занятий массовой физической культурой связан прежде всего с повышением аэробных возможностей организма, уровня общей выносливости и трудоспособности.

Повышение физической работоспособности сопровождается профилактическим эффектом в отношении факторов риска сердечно-сосудистых заболеваний: снижением веса тела и жировой массы, содржания холестерина и триглицеридов в крови, снижением артериального давления и ЧСС. Кроме того, регулярная физическая тренировка позволяет в значительной степени задержать возрастных инволюционных изменений физиологических функций, а также дегенеративных изменений органов и систем.

Выполнение физических упражнений положительно влияет на весь двигательный аппарат, препятствуя развития дегенеративных изменений, связанных с возрастом и гиподинамией (нарушение функций организма при снижении двигательной активности). Повышается минерализация костной ткани и содержание кальция в организме, что препятствует развитию остеопороза (дистрофия костной ткани с перестройкой её структуры и разрежением). Увеличивается приток лимфы к суставным хрящам и межпозвонковым дискам, что является лучшим средством профилактики артроза и остеохондроза (дегенерация суставных хрящей). Все эти данные свидетельствуют о неоценимом положительном влиянии занятий физической культурой на организм человека. Таким образом, можно говорить о необходимости физических упражнений в жизни каждого человека. При этом очень важно учитывать состояние здоровья человека и его уровень физической подготовки для рационального использования физических возможностей организма, чтобы физические нагрузки не принесли вреда здоровью.

Размещено на Allbest.ru

Подобные документы

    Влияние двигательной активности на органы и системы организма. Интенсивность, длительность физических нагрузок, их влияние на организм. Физиологические и биологические изменения происходящие в организме под воздействием активной двигательной деятельности.

    курсовая работа , добавлен 27.04.2009

    Физиологические изменения в организме, в нервной системе и в железах внутренней секреции под влиянием физических нагрузок. Биологические изменения, происходящие в организме под воздействием двигательной деятельности. "Мертвая точка" и "второе дыхание".

    контрольная работа , добавлен 08.05.2011

    Лыжный спорт как один из самых массовых видов спорта, культивируемых в Российской Федерации. Общая характеристика физических качеств и организма лыжников: изменение мышц, дыхательной и сердечнососудистой систем под влиянием занятий лыжным спортом.

    курсовая работа , добавлен 05.06.2011

    Биологические и физиологические изменения в организме человека под влиянием физических нагрузок. Значение двигательной активности для работоспособности органов и систем. Характеристика процессов утомления и восстановления в циклических видах спорта.

    дипломная работа , добавлен 10.06.2015

    Знание о профессиональных заболеваниях. Подбор комплекса физических упражнений, выполняя который можно снизить отрицательные влияния профессии. Выбор приоритетных физических качеств. Подбор отдельных физических прикладных упражнений или видов спорта.

    презентация , добавлен 18.06.2012

    Анатомо-физиологические особенности опорно-двигательного аппарата. Функции мышц, особенности силовых упражнений, направленных на развитие мышц тела. Работа мышц в покое и при физической нагрузке. Влияние занятий спортом на состояние скелетной мускулатуры.

    реферат , добавлен 28.04.2015

    Гимнастика как основа физических упражнений и формирования их традиционных систем. Основа физической тренировки в фитнесе. Калланетика как система упражнений, направленная на увеличение активности глубоких мышечных групп. Выполнение упражнений ушу.

    реферат , добавлен 15.04.2016

    Механизм тонизирующего и трофического влияния физических упражнений. Процесс нормализации функций для восстановления здоровья и работоспособности после заболевания или травмы. Классификация физических упражнений, применяемых в лечебной физкультуре.

    реферат , добавлен 28.04.2014

    В основе физиологии упражнений и спорта лежат анатомия и физиология. Анатомия изучает структуру и форму организма. Физиология упражнений изучает изменения структур и функций организма под воздействием срочных и долговременных физических нагрузок.

    реферат , добавлен 23.09.2008

    Движение как мощный стимулятор катаболических процессов в организме человека. Активизация в период покоя биосинтетических - анаболических процессов. Виды движения: ходьба, бег, гимнастика и культуризм. Профилактический эффект физических упражнений.

План:

1. Введение .

2. Особенности тренированного тела человека.

3. Изменения в организме человека под влиянием физических нагрузок.

4. Обмен веществ в мышце.

Введение

Красота и сила тренированного тела всегда привлекали живописцев и ваятелей. Это проявлялось уже в наскальной пещерной живописи наших предков, достигло совершенства во фресках древней Эллады, скульптурах Микеланджело. В то же время не всегда тренированность человека сопровождается повышением выносливости, а за рекорды в большом спорте организм нередко расплачивается дорогой ценой.

Тренированность организма человека - это возможность выполнять большие физические нагрузки, обычно наблюдается у людей, чей образ жизни или профессия связаны с напряженной мышечной деятельностью: у лесорубов, шахтеров, такелажников, спортсменов. Тренированный организм, приспособленный к физическим нагрузкам, способен не только осуществлять интенсивную мышечную работу, но и оказывается более устойчивым к ситуациям, вызывающим болезни, к эмоциональным нагрузкам, экологическим воздействиям.

Особенности тренированного тела человека:

Существуют две основные черты тренированного тела человека, привыкшего к большим физическим нагрузкам. Первая черта заключается в возможности выполнять мышечную работу такой продолжительности или интенсивности, которая не под силу нетренированному организму. Не приученный к физическим нагрузкам человек не в состоянии пробежать марафонскую дистанцию или поднять штангу весом, значительно превышающим его собственный. Вторая черта заключается в более экономном функционировании физиологических систем в покое и при умеренных нагрузках, а при максимальных нагрузках - способности достигать такого уровня функционирования, который невозможен для нетренированного организма.

Так, в условиях покоя у постоянно выполняющего большие физические нагрузки человека частота пульса может составлять всего 30-50 ударов в минуту, частота дыхания - 6-10 в минуту. Живущий физическим трудом человек осуществляет мышечную работу при меньшем увеличении потребления кислорода и с большей эффективностью. При предельно напряженной работе в тренированном организме происходит значительно большая мобилизация систем кровообращения, дыхания, обмена энергии по сравнению с нетренированным.

Изменения в организме человека под влиянием физических нагрузок:

В организме каждого человека под влиянием тяжелого физического труда в клетках органов и тканей, на которые падает физическая нагрузка, активируется синтез нуклеиновых кислот и белков. Эта активация приводит к избирательному росту клеточных структур, ответственных за адаптацию к физической нагрузке. В результате, во-первых, возрастают функциональные возможности такой системы, а во-вторых, временные сдвиги переходят в постоянные прочные связи.

Изменения в организме человека вследствие интенсивной мышечной деятельности во всех случаях представляют собой реакцию целого организма, направленную на решение двух задач: обеспечения мышечной деятельности и поддержания постоянства внутренней среды организма (гомеостаза). Эти процессы запускаются и регулируются центральным управляющим механизмом, имеющим два звена: нейрогенное и гуморальное.

Рассмотрим первое звено, управляющее процессом тренировки организма на физиологическом уровне, - нейрогенное звено.

Формирование двигательной реакции и мобилизация вегетативных функций в ответ на начинающуюся мышечную работу обеспечиваются у человека центральной нервной системой (ЦНС) на основе рефлекторного принципа координации функций. Этот принцип эволюционно обеспечен строением ЦНС, а именно тем, что рефлекторные дуги связаны между собой большим количеством вставочных клеток, а количество сенсорных в несколько раз превышает количество двигательных нейронов. Преобладание вставочных и сенсорных нейронов - морфологическая основа целостного и координированного реагирования организма человека на физическую нагрузку, другие воздействия внешней среды.

В реализации различных движений у человека могут принимать участие структуры продолговатого мозга, четверохолмия, подбугровой области, мозжечка, других образований головного мозга, в том числе высшего центра - моторной зоны коры больших полушарий. В ответ на мышечную нагрузку (благодаря многочисленным связям в ЦНС) происходит мобилизация функциональной системы, ответственной за двигательную реакцию организма.

Весь процесс начинается с сигнала, чаще всего условнорефлекторного, побуждающего к мышечной деятельности. Сигнал (афферентная импульсация от рецепторов) поступает в кору головного мозга в центр управления. «Управляющая система» активирует соответствующие мышцы, воздействует на центры дыхания, кровообращения, другие обеспечивающие системы. Поэтому соответственно физической нагрузке возрастает легочная вентиляция, увеличивается минутный объем сердца, происходит перераспределение регионального кровотока, тормозится функция органов пищеварения.

Совершенствование управления и периферического аппарата двигательной системы достигается в процессе многократного повторения сигнала и ответной мышечной работы (то есть во время тренировки человека). В результате этого процесса «управляющая система» закрепляется в виде динамического стереотипа и организм человека приобретает навык двигательной активности.

Расширение числа условных рефлексов в процессе тренировки человека создает условия для лучшей реализации явления экстраполяции в двигательных актах. Примером проявления экстраполяции могут служить движения хоккеиста в сложной, непрерывно меняющейся обстановке игры, поведение шофера-профессионала на незнакомой сложной трассе.

Одновременно с поступлением сигнала о физической нагрузке происходит нейрогенная активация гипоталамо-гипофизарной и симпатоадреналовой систем, что сопровождается интенсивным высвобождением в кровь соответствующих гормонов и медиаторов. Это второе звено механизма регуляции мышечной деятельности, гуморальное. Главными результатами гуморальной реакции в ответ на физическую нагрузку являются мобилизация энергетических ресурсов; перераспределение их в организме человека к органам и тканям, подвергающимся нагрузке; потенциация работы двигательной системы и обеспечивающих ее механизмов; формирование структурной основы долговременной адаптации к физической нагрузке.

При мышечной нагрузке пропорционально ее величине происходит увеличение секреции глюкагона, возрастает его концентрация в крови. В то же время происходит снижение концентрации инсулина. Закономерно увеличивается выход в кровь соматотропина (СТГ - гормона роста), что обусловлено возрастающей секрецией в гипоталамусе соматолиберина. Уровень секреции СТГ постепенно нарастает и длительное время остается повышенным. В нетренированном организме секреция гормона не может перекрыть возросший захват его тканями, поэтому уровень СТГ у нетренированного человека при тяжелой физической нагрузке существенно снижен.

Физиологическое значение перечисленных выше и других гормональных сдвигов определяется их участием в энергообеспечении мышечной работы и в мобилизации энергоресурсов. Такие сдвиги носят важный активирующий характер и подтверждают следующие положения:

1. Активация моторных центров и гормональные сдвиги, вызванные физической нагрузкой, небезразличны для центральной нервной системы. Малые и умеренные физические нагрузки активируют процессы высшей нервной деятельности, повышают умственную работоспособность. Длительные интенсивные нагрузки, особенно с истощающим последствием, вызывают противоположный эффект, резко снижают умственную работоспособность.

2. Неприспособленный к физическим нагрузкам организм человека не может справиться с интенсивными и длительными воздействиями. Для высокой производительности труда, где весомым является физический компонент, необходимо приобретение как специфических для данной специальности навыков, так и неспецифической физической тренированности.

3. Физическая разминка (гимнастика, разнообразная дозированная нагрузка, рациональные упражнения по снятию усталости сидячей позы и др. виды тренировки человека) служит важным фактором повышения работоспособности, особенно при гиподинамии и гипокинезии, монотонных видах труда.

4. Как в труде, так и в спорте достижения могут быть получены лишь с помощью построенной на основе научных медицинских фактов рациональной системы упражнений и тренировок.

5. Тяжелый физический труд для нетренированного организма, длительное время находившегося без физических нагрузок, точно так же, как резкое прекращение интенсивной физической работы (особенно у спортсменов-марафонцев, лыжников, штангистов), может вызвать грубые сдвиги в регуляции функций, переходящие во временные расстройства здоровья или стойкие заболевания.

Физическая работа делится на два вида, динамическую и статическую.

Динамическая работа выпол­няется тогда, когда в физическом смысле происхо­дит преодоление сопротивления на определенном расстоянии В этом случае (например, при езде на велосипеде, подъеме на лестницу или в гору) работа может быть выражена в физических единицах (1 Вт = 1 Дж/с = 1 Нм/с) При положительной ди­намической работе мускулатура действует как «дви­гатель», а при отрицательной динамической работе она играет роль «тормоза» (например, при спуске с горы) .

Статическая работа производится при изо­метрическом мышечной сокращении. Так как при этом не преодолевается никакое расстояние, в физи­ческом смысле это не работа; тем не менее организм реагирует на нагрузку физиологическим напряженн­ей. Проделанная работа в этом случае измеряется как произведение силы и времени.

Физические нагрузки вызывают перестройки различных функций организма, особенности и степень которых зависят от мощности и характера двигательной деятельности.

ИЗМЕНЕНИЯ ФУНКЦИЙ РАЗЛИЧНЫХ ОРГАНОВ И СИСТЕМ ОРГАНИЗМА

В состоянии покоя деятельность различных функций отрегулирована соответственно невысокому уровню кислородного запроса и энергообеспечения. При переходе к рабочему уровню необходима перестройка функций различных органов и систем на более высокий уровень активности и новое межсистемное согласование на рабочем уровне.

В центральной нервной системе происходит повышение лабильности и возбудимости многих проекционных и ассоциативных нейронов. Во время работы»нейроны движения» организуют через пирамидный путь моторную активность, а «нейроны положения» через экстрапирамидную систему - формирование рабочей позы. В различных отделах ЦНС создается функциональная система нервных центров, обеспечивающая выполнение задуманной цели действия на основе анализа внешней информации, действующих в данный момент мотиваций и хранящихся в мозгу памятных следов двигательных навыков и тактических комбинаций. Возникающий комплекс нервных центров становится рабочей доминантой, которая имеет повышенную возбудимость, подкрепляется различными афферентными раздражениями и избирательно затормаживает реакции на посторонние раздражители. В пределах доминирующих нервных центров создается цепь условных и безусловных рефлексов или двигательный динамический стереотип, облегчающий последовательное выполнение одинаковых движений (в циклических упражнениях) или программы различных двигательных актов (в ациклических упражнениях).

Еще перед началом работы в коре больших полушарий происходит предварительное программирование и формирование преднастройки на предстоящее движение, которые отражаются в различных формах изменений электрической активности. Происходит избирательное увеличение межцентральных взаимосвязей корковых потенциалов, изменяется форма кривой, огибающей амплитуду колебаний ЭЭГ, появляются «меченые ритмы» ЭЭГ - потенциалы в темпе предстоящего движения, возникают условные отрицательные колебания или так называемые «волны ожидания», а также премоторные и моторные потенциалы.

В спинном мозгу за 60 мс перед началом двигательного акта повышается возбудимость мотонейронов, что отражается в нарастании амплитуды вызываемых в этот момент спинальных рефлексов (Н-рефлексов).

В мобилизации функций организма и их резервов значительна роль симпатической нервной системы, выделения гормонов гипофиза и надпочечников, нейропептидов.

В двигательном аппарате при работе повышаются возбудимость и лабильность работающих мышц, повышается чувствительность их проприорецепторов, растет температура и снижается вязкость мышечных волокон. В мышцах дополнительно открываются капилляры, которые в состоянии покоя находились в спавшемся состоянии, и улучшается кровоснабжение. Однако при больших статических напряжениях (более 30% максимального усилия) кровоток в мышцах резко затрудняется или вовсе прекращается из-за сдавливания кровеносных сосудов. Нервные импульсы, приходящие в мышцу с небольшой частотой, вызывают слабые одиночные сокращения мышечных волокон, а при повышении частоты - их более мощные титанические сокращения.

Различные двигательные единицы (ДЕ) в целой скелетной мышце при длительных физических нагрузках вовлекаются в работу попеременно, восстанавливаясь в периоды отдыха, а при больших кратковременных напряжениях - включаются синхронно. В зависимости от мощности работы активируются разные ДЕ: при небольшой интенсивности работы активны лишь высоковозбудимые и менее мощные медленные ДЕ, а с повышением мощности работы - промежуточные и, наконец, мало возбудимые, но наиболее мощные быстрые ДЕ.

Дыхание значительно увеличивается при мышечной работе - растет глубина дыхания (до2-3л) и частота дыхания (до 40-60 вдохов в 1мин). Минутный объем дыхания при этом может увеличиваться до 150-200л * мин-1. Однако большое потребление кислорода дыхательными мышцами (до 1 л * мин--1) Делает нецелесообразным предельное напряжение внешнего дыхания.

Сердечно - сосудистая система, участвуя в доставке кислорода работающим тканям, претерпевает заметные рабочие изменения. Увеличивается систолический объем крови (при больших нагрузках у спортсменов до 150-200 мл), нарастает ЧСС (до 180 уд мин-1 и более), растет минутный объем крови (у тренированных спортсменов до 35 л мин-1 и более). Происходит перераспределение крови в пользу работающих органов - главным образом, скелетных мышц, а также сердечной мышцы, легких, активных зон мозга - и снижение кровоснабжения внутренних органов и кожи. Перераспределение крови тем более выражено, чем больше мощность работы. Количество циркулирующей крови при работе увеличивается за счет ее выхода из кровяных депо. Увеличивается скорость кровотока, а время кругооборота крови снижается вдвое.

В системе крови наблюдается увеличение количества форменных элементов. Наблюдается миогенный эритроцитоз (до 5.5-6*1012 л-1) и миогенный эритроцитоз (увеличение в 2 раза). В зависимости от тяжести работы проявляются различные стадии миогенного лейкоцитоза. Небольшие тренировочные нагрузки вызывают появление 1-ой стадии - лимфоцитарной с преобладанием в лейкоцитарной формуле лимфоцитов и ростом общего количества лейкоцитов до 10-12 * 109 * мл-1 Более значительные нагрузки, особенно в соревнованиях, вызывают появление 2-ой стадии или 1 -ой нейтрофильной с ростом количества нейтрофилов (особенно юных и палочкоядерных) и увеличением количества лейкоцитов до 16-18 109 л-1 Истощающая нагрузка приводит к 3-ей стадии или 2-ой нейтрофильной с резким ростом количества лейкоцитов в крови до 20-50 109 л-1 преобладанием незрелых форм нейтрофилов и исчезновением других форм лейкоцитов (эозинофилов, базофилов).

При работе увеличивается отдача кислорода из крови в ткани. Соответственно, становится больше артериовенозная разность по кислороду и коэффициент использования кислорода.

Рост кислородного долга при передвижениях спортсменов на средних и длинных дистанциях сопровождается увеличением в крови концентрации молочной кислоты и снижением рН крови. В связи с потерей воды и увеличением количества форменных элементов повышение вязкости крови постигает 70%.

При циклических упражнениях различной длительности с увеличением дистанции снижаются единичные энерготраты (ккал в 1 с) и растут суммарные энерготраты (до 2-3 ккал на всю работу), а анаэробный путь энергопродукции (за счет АТФ, КрФ и гликолиза) сменяется постепенно аэробным путем (за счет окисления углеводов, а затем и жиров).

Физические нагрузки вызывают перестройки функций организма, особенности и степень которых зависят от мощности и характера двигательной активности.

В состоянии покоя деятельность функций организма находится на невысоком уровне. При переходе к рабочему уровню происходит перестройка функций органов и систем на более высокий уровень активности.

В центральной нервной системе происходит повышение лабильности и возбудимости проекционных и ассоциативных нейронов. В различных отделах ЦНС создается функциональная система нервных центров, где на основе анализа внешней информации, мотивации и, хранившихся в мозге, памятных следов двигательных навыков и тактических комбинаций, обеспечивается выполнение задуманной цели действия. Возникший комплекс нервных центров становится рабочей доминантой, которая имеет повышенную возбудимость, подкрепляется афферентными раздражителями и избирательно затормаживает реакции на посторонние раздражители. В пределах доминирующих нервных центров создается цепь условных и безусловных рефлексов или двигательный динамический стереотип, облегчающий выполнение циклических движений или программы различных двигательных ациклических актов. Перед началом работы в коре больших полушарий происходит предварительное программирование и формирование преднастройки на предстоящее движение. В спинном мозге за 60 мс перед началом двигательного акта повышается возбудимость мотонейронов, что отражается в нарастании амплитуды спинальных рефлексов.

В двигательном аппарате при работе повышаются возбудимость и лабильность работающих мышц, повышается чувствительность их проприорецепторов, растет температура и снижается вязкость мышечных волокон. В мышцах дополнительно открываются капилляры, которые находятся в спавшемся состоянии в покое, улучшается кровоснабжение. При больших статических напряжениях (более 30 % максимального усилия) кровоток в мышцах резко затрудняется или прекращается из-за сдавливания кровеносных сосудов. Различные двигательные единицы в целой скелетной мышце при длительных физических нагрузках вовлекаются в работу попеременно, восстанавливаясь в периоды отдыха, а при кратковременных больших напряжениях - включаются синхронно. В зависимости от мощности работы активизируются разные двигательные единицы: при небольшой интенсивности работы активны только высоковозбудимые и менее мощные двигательные единицы, а с повышением мощности работы включаются промежуточные, маловозбудимые, но наиболее мощные и быстрые двигательные единицы.

Дыхание значительно увеличивается при мышечной работе – растет глубина дыхания (до 2-3 л) и частота дыхания (до 40-60 вдохов в минуту). Минутный объем дыхания при этом может увеличиваться до 150-200 л×мин. Однако большое потребление кислорода дыхательными мышцами (до 1 л×мин) делает нецелесообразным предельное напряжение внешнего дыхания.

Сердечнососудистая система, участвуя в доставке кислорода работающим тканям, претерпевает заметные изменения. Увеличивается систолический объем крови (при больших нагрузках у спортсменов до 150 - 200 мл), нарастает частота сердечных сокращений (ЧСС до 180 уд/мин и более), растет минутный объем крови (МОК) у тренированных спортсменов до 35 л×мин и более. Происходит перераспределение крови в пользу работающих органов – скелетных мышц, сердечной мышцы, легких, активных зон мозга – и снижение кровоснабжения внутренних органов и кожи. Чем больше мощность работы, тем более выражено распределение крови. Количество циркулирующей крови увеличивается за счет выхода ее из кровяных депо. Увеличивается скорость кровотока, а время кругооборота крови снижается в два раза.

В системе крови увеличивается количество форменных элементов. Наблюдается миогенный эритроцитоз.

При работе увеличивается отдача кислорода из крови в ткани. Становится больше артериовенозная разность по кислороду и коэффициент использования кислорода.

Рост кислородного долга при передвижениях спортсменов на средних и длинных дистанциях сопровождается увеличением в крови концентрации молочной кислоты и снижением рН крови. При циклических упражнениях различной длительности с увеличением дистанции снижаются единичные энерготраты (ккал в 1с) и растут суммарные энерготраты (до 2 – 3 тыс. ккал на всю работу), а анаэробный путь энергопродукции (за счет АТФ, КрФ и гликолиза) сменяется постепенно аэробным путем (за счет окисления углеводов, а затем и жиров).

Физические нагрузки вызывают перестройки различных функций организма, особенности и степень которых зависят от мощности, характера двигательной деятельности, уровня здоровья и тренированности. О влиянии физических нагрузок на человека можно судить только на основе всестороннего учета совокупности реакций целостного организма, включая реакцию со стороны центральной нервной системы (ЦНС), сердечно-сосудистой системы (ССС), дыхательной системы, обмена веществ и др. Следует подчеркнуть, что выраженность изменений функций организма в ответ на физическую нагрузку зависит, прежде всего, от индивидуальных особенностей человека и уровня его тренированности. В основе развития тренированности, в свою очередь, лежит процесс адаптации организма к физическим нагрузкам. Адаптация - совокупность физиологических реакций, лежащая в основе приспособлений организма к изменению окружающих условий и направленная на сохранение относительного постоянства его внутренней среды - гомеостаза.

В понятиях «адаптация, адаптированность», с одной стороны, и «тренировка, тренированность», с другой стороны, много общих черт, главной из которых является достижение нового уровня работоспособности. Адаптация организма к физическим нагрузкам заключается в мобилизации и использовании функциональных резервов организма, совершенствовании имеющихся физиологических механизмов регуляции. Никаких новых функциональных явлений и механизмов в процессе адаптации не наблюдается, просто имеющиеся уже механизмы начинают работать совершеннее, интенсивнее и экономичнее (урежение сердцебиения, углубление дыхания и др.).

Процесс адаптации связан с изменениями в деятельности всего комплекса функциональных систем организма (сердечно-сосудистая, дыхательная, нервная, эндокринная, пищеварительная, сенсомоторная и др. системы). Разные виды физических упражнений предъявляют различные требования к отдельным органам и системам организма. Правильно организованный процесс выполнения физических упражнений создает условия для совершенствования механизмов, поддерживающих гомеостаз. В результате этого сдвиги, происходящие во внутренней среде организма, быстрее компенсируются, клетки и ткани становятся менее чувствительными к накоплению продуктов обмена веществ.

Среди физиологических факторов, определяющих степень адаптации к физическим нагрузкам, большое значение имеют показатели состояния систем, обеспечивающих транспорт кислорода, а именно - система крови и дыхательная система.

Кровь и кровеносная система

В организме взрослого человека содержится 5–6 л крови. В состоянии покоя 40–50 % ее не циркулирует, находясь в так называемом «депо» (селезенка, кожа, печень). При мышечной работе увеличивается количество циркулирующей крови (за счет выхода из «депо»). Происходит ее перераспределение в организме: большая часть крови устремляется к активно работающим органам: скелетным мышцам, сердцу, легким. Изменения в составе крови направлены на удовлетворение возросшей потребности организма в кислороде. В результате увеличения количества эритроцитов и гемоглобина повышается кислородная емкость крови, т. е. увеличивается количество кислорода, переносимого в 100 мл крови. При занятиях спортом увеличивается масса крови, повышается количество гемоглобина (на 1–3 %), увеличивается число эритроцитов (на 0,5–1 млн. в кубическом мм), возрастает количество лейкоцитов и их активность, что повышает сопротивляемость организма к простудным и инфекционным заболеваниям. В результате мышечной деятельности активизируется система свертывания крови. Это одно из проявлений срочной адаптации организма к воздействию физических нагрузок и возможным травмам с последующим кровотечением. Программируя «с опережением» такую ситуацию, организм повышает защитную функцию системы свертывания крови.

Двигательная деятельность оказывает существенное влияние на развитие и состояние всей системы кровообращения. В первую очередь, изменяется само сердце: увеличиваются масса сердечной мышцы и размеры сердца. У тренированных масса сердца составляет в среднем 500 г, у нетренированных - 300.

Сердце человека чрезвычайно легко поддается тренировке и как ни один другой орган нуждается в ней. Активная мышечная деятельность способствует гипертрофии сердечной мышцы и увеличению его полостей. Объем сердца у спортсменов больше на 30 %, чем у не занимающихся спортом. Увеличение объема сердца, особенно его левого желудочка, сопровождается повышением его сократительной способности, увеличением систолического и минутного объемов.

Физическая нагрузка способствует изменению деятельности не только сердца, но и кровеносных сосудов. Активная двигательная деятельность вызывает расширение кровеносных сосудов, снижение тонуса их стенок, повышение их эластичности. При физических нагрузках почти полностью раскрывается микроскопическая капиллярная сеть, которая в покое задействована всего на 30–40 %. Все это позволяет существенно ускорить кровоток и, следовательно, увеличить поступление питательных веществ и кислорода во все клетки и ткани организма.

Работа сердца характеризуется непрерывной сменой сокращений и расслаблений его мышечных волокон. Сокращение сердца называется систолой, расслабление - диастолой. Количество сокращений сердца за одну минуту - частота сердечных сокращений (ЧСС). В состоянии покоя у здоровых нетренированных людей ЧСС находится в пределах 60–80 уд/мин, у спортсменов - 45–55 уд/мин и ниже. Урежение ЧСС в результате систематических занятий физическими упражнениями называется брадикардией. Брадикардия препятствует «изнашиванию миокарда и имеет важное оздоровительное значение. На протяжении суток, в течение которых не было тренировок и соревнований, сумма суточного пульса у спортсменов на 15–20 % меньше, чем у лиц того же пола и возраста, не занимающихся спортом.

Мышечная деятельность вызывает учащение сердцебиения. При напряженной мышечной работе ЧСС может достигать 180–215 уд/мин. Следует отметить, что увеличение ЧСС имеет прямо пропорциональную зависимость с мощностью мышечной работы. Чем больше мощность работы, тем выше показатели ЧСС. Тем не менее, при одинаковой мощности мышечной работы ЧСС у менее подготовленных лиц значительно выше. Кроме того, при выполнении любой двигательной деятельности ЧСС изменяется в зависимости от пола, возраста, самочувствия, условий занятий (температура, влажность воздуха, время суток и т. д.).

При каждом сокращении сердца кровь выбрасывается в артерии под большим давлением. В результате сопротивления кровеносных сосудов ее передвижение в них создается давлением, называемое кровяным давлением. Наибольшее давление в артериях называют систолическим или максимальным, наименьшее - диастолическим или минимальным. В состоянии покоя у взрослых людей систолическое давление составляет 100–130 мм рт. ст., диастолическое - 60–80 мм рт. ст. По данным Всемирной организации здравоохранения, артериальное давление до 140/90 мм рт. ст. является нормотоническим, выше этих величин - гипертоническим, а ниже 100–60 мм рт. ст. - гипотоническим. В процессе выполнения физических упражнений, а также после окончания тренировки, артериальное давление обычно повышается. Степень его повышения зависит от мощности выполненной физической нагрузки и уровня тренированности человека. Диастолическое давление изменяется менее выражено, чем систолическое. После длительной и очень напряженной деятельности (например, участие в марафоне) диастолическое давление (в некоторых случаях и систолическое) может быть меньше, чем до выполнения мышечной работы. Это обусловлено расширением сосудов в работающих мышцах.

Важными показателями производительности сердца являются систолический и минутный объем. Систолический объем крови (ударный объем) - это количество крови, выбрасываемой правым и левым желудочками при каждом сокращении сердца. Систолический объем в покое у тренированных - 70–80 мл, у нетренированных - 50–70 мл. Наибольший систолический объем наблюдается при ЧСС 130–180 уд/мин. При ЧСС свыше 180 уд/мин он сильно снижается. Поэтому наилучшие возможности для тренировки сердца имеют физические нагрузки в режиме 130–180 уд/мин. Минутный объем крови - количество крови, выбрасываемое сердцем за одну минуту, зависит от ЧСС и систолического объема крови. В состоянии покоя минутный объем крови (МОК) составляет в среднем 5–6 л, при легкой мышечной работе увеличивается до 10–15 л, при напряженной физической работе у спортсменов может достигать 42 л и более. Увеличение МОК при мышечной деятельности обеспечивает повышенную потребность органов и тканей в кровоснабжении.

Дыхательная система

Изменения показателей дыхательной системы при выполнении мышечной деятельности оцениваются по частоте дыхания, жизненной емкости легких, потреблением кислорода, кислородным долгом и другими более сложными лабораторными исследованиями. Частота дыхания (смена вдоха и выдоха и дыхательной паузы) - количество дыханий в одну минуту. Определение частоты дыхания производится по спирограмме или по движению грудной клетки. Средняя частота у здоровых лиц 16–18 в минуту, у спортсменов - 8–12. При физической нагрузке частота дыхания увеличивается в среднем в 2–4 раза и составляет 40–60 дыхательных циклов в минуту. С учащением дыхания неизбежно уменьшается его глубина. Глубина дыхания - это объем воздуха спокойного вдоха и ли выдоха при одном дыхательном цикле. Глубина дыхания зависит от роста, веса, размера грудной клетки, уровня развития дыхательных мышц, функционального состояния и степени тренированности человека. Жизненная емкость легких (ЖЕЛ) - наибольший объем воздуха, который можно выдохнуть после максимального вдоха. У женщин ЖЕЛ составляет в среднем 2,5–4 л, у мужчин - 3,5–5 л. Под влиянием тренировки ЖЕЛ возрастает, у хорошо тренированных спортсменов она достигает 8 л. Минутный объем дыхания (МОД) характеризует функцию внешнего дыхания, определяется произведением частоты дыхания на дыхательный объем. В покое МОД составляет 5–6 л, при напряженной физической нагрузке возрастает до 120–150 л/мин и более. При мышечной работе ткани, особенно скелетные мышцы, требуют значительно больше кислорода, чем в покое, и вырабатывают больше углекислого газа. Это приводит к увеличению МОД, как за счет учащения дыхания, так и вследствие увеличения дыхательного объема. Чем тяжелее работа, тем относительно больше МОД (табл. 2.2).

Таблица 2.2

Средние показатели реакции сердечно-сосудистой

и дыхательной систем на физическую нагрузку

Параметры

При интенсивной физической нагрузке

Частота сердечных сокращений

50–75 уд/мин

160–210 уд/мин

Систолическое артериальное давление

100–130 мм рт. ст.

200–250 мм рт. ст.

Систолический объем крови

150–170 мл и выше

Минутный объем крови (МОК)

30–35 л/мин и выше

Частота дыхания

14 раз/мин

60–70 раз/мин

Альвеолярная вентиляция

(эффективный объем)

120 л/мин и более

Минутный объем дыхания

120–150 л/мин

Максимальное потребление кислорода (МПК) является основным показателем продуктивности как дыхательной, так и сердечно-сосудистой (в целом - кардио-респираторной) систем. МПК - это наибольшее количество кислорода, которое человек способен потребить в течение одной минуты на 1 кг веса. МПК измеряется количеством миллилитров за 1 мин на 1 кг веса (мл/мин/кг). МПК является показателем аэробной способности организма, т. е. способности совершать интенсивную мышечную работу, обеспечивая энергетические расходы за счет кислорода, поглощаемого непосредственно во время работы. Величину МПК можно определить математическим расчетом, используя специальные номограммы; можно в лабораторных условиях при работе на велоэргометре или восхождении на ступеньку. МПК зависит от возраста, состояния сердечно-сосудистой системы, массы тела. Для сохранения здоровья необходимо обладать способностью потреблять кислород как минимум на 1 кг - женщинам не менее 42 мл/мин, мужчинам - не менее 50 мл/мин. Когда в клетки тканей поступает меньше кислорода, чем нужно для полного обеспечения потребности в энергии, возникает кислородное голодание, или гипоксия.

Кислородный долг - это количество кислорода, которое требуется для окисления продуктов обмена веществ, образовавшихся при физической работе. При интенсивных физических нагрузках, как правило, наблюдается метаболический ацидоз различной степени выраженности. Его причиной является «закисление» крови, т. е. накопление в крови метаболитов обмена веществ (молочной, пировиноградной кислот и др.). Для ликвидации этих продуктов обмена нужен кислород - создается кислородный запрос. Когда кислородный запрос выше потребления кислорода в данный момент, образуется кислородный долг. Нетренированные люди способны продолжить работу при кислородном долге 6–10 л, спортсмены могут выполнять такую нагрузку, после которой возникает кислородный долг в 16–18 л и более. Кислородный долг ликвидируется после окончания работы. Время его ликвидации зависит от длительности и интенсивности предыдущей работы (от нескольких минут до 1,5 ч).

Пищеварительная система

Систематически выполняемые физические нагрузки повышают обмен веществ и энергии, увеличивают потребность организма в питательных веществах, стимулирующих выделение пищеварительных соков, активизируют перистальтику кишечника, повышают эффективность процессов пищеварения.

Однако при напряженной мышечной деятельности могут развиваться тормозные процессы в пищеварительных центрах, уменьшающие кровоснабжение различных отделов желудочно-кишечного тракта и пищеварительных желез в связи с тем, что необходимо обеспечивать кровью усиленно работающие мышцы. В то же время сам процесс активного переваривания обильной пищи в течение 2–3 ч после ее приема снижает эффективность мышечной деятельности, так как органы пищеварения в этой ситуации оказываются как бы более нуждающимися в усиленном кровообращении. Кроме того, наполненный желудок приподнимает диафрагму, тем самым, затрудняя деятельность органов дыхания и кровообращения. Вот почему физиологическая закономерность требует принимать пишу за 2,5–3,5 ч до начала тренировки, и через 30–60 минут после нее.

Выделительная система

При мышечной деятельности значительна роль органов выделения, которые выполняют функцию сохранения внутренней среды организма. Желудочно-кишечный тракт выводит остатки переваренной пищи; через легкие удаляются газообразные продукты обмена веществ; сальные железы, выделяя кожное сало, образуют защитный, смягчающий слой на поверхности тела; слезные железы обеспечивают влагу, смачивающую слизистую оболочку глазного яблока. Однако основная роль в освобождении организма от конечных продуктов обмена веществ принадлежит почкам, потовым железам и легким.

Почки поддерживают в организме необходимую концентрацию воды, солей и других веществ; выводят конечные продукты белкового обмена; вырабатывают гормон ренин, влияющий на тонус кровеносных сосудов. При больших физических нагрузках потовые железы и легкие, увеличивая активность выделительной функции, значительно помогают почкам в выводе из организма продуктов распада, образующихся при интенсивно протекающих процессах обмена веществ.

Нервная система в управлении движениями

При управлении движениями ЦНС осуществляет очень сложную деятельность. Для выполнения четких целенаправленных движений необходимо непрерывное поступление в ЦНС сигналов о функциональном состоянии мышц, о степени их сокращения и расслабления, о позе тела, о положении суставов и угла сгиба в них. Вся эта информация передается от рецепторов сенсорных систем и особенно от рецепторов двигательной сенсорной системы, расположенных в мышечной ткани, сухожилиях, суставных сумках. От этих рецепторов по принципу обратной связи и по механизму рефлекса ЦНС поступает полная информация о выполнении двигательного действия и о сравнении ее с заданной программой. При многократном повторении двигательного действия импульсы от рецепторов достигают двигательных центров ЦНС, которые соответственным образом меняют свою импульсацию, идущую к мышцам, с целью совершенствования разучиваемого движения до уровня двигательного навыка.

Двигательный навык - форма двигательной деятельности, выработанная по механизму условного рефлекса в результате систематических упражнений. Процесс формирования двигательного навыка проходит три фазы: генерализации, концентрации, автоматизации.

Фаза генерализации характеризуется расширением и усилением процессов возбуждения, в результате чего в работу вовлекаются лишние группы мышц, а напряжение работающих мышц оказывается неоправданно большим. В этой фазе движения скованы, неэкономичны, неточны и плохо координированы.

Фаза концентрации характеризуется снижением процессов возбуждения благодаря дифференцированному торможению, концентрируясь в нужных зонах головного мозга. Исчезает излишняя напряженность движений, они становятся точными, экономичными, выполняются свободно, без напряжения, стабильно.

В фазе автоматизации навык уточняется и закрепляется, выполнение отдельных движений становится как бы автоматическим и не требует контроля сознания, которое может быть переключено на окружающую обстановку, поиск решений и т. п. Автоматизированный навык отличается высокой точностью и стабильностью всех составляющих его движений.



  • Разделы сайта