Анаэробная энергия при мышечной деятельности. Аэробная и анаэробная производительность спортсменов

Аэробная и анаэробная работоспособность организма

Работоспособность организма - это способность совершать работу, требующая затраты (выделения) энергии. Энергия в организме высвобождается в процессе дыхания - окисления органических веществ (белков, жиров и углеводов) кислородом воздуха.

Следовательно, в анаэробных (бескислородных) условиях на фоне снижения уровня кислорода будет наблюдаться уменьшение интенсивности окисления органических веществ и, как следствие, снижение количества выделяемой энергии, а значит и уменьшение работоспособности организма.

В аэробных условиях, наоборот, на фоне возрастания уровня кислорода будет наблюдаться повышение интенсивности окисления органических веществ и, как следствие, увеличение количества выделяемой энергии, а значит и повышение работоспособности организма.

Биохимические основы быстроты (скорости) как качества двигательной деятельности.

Двигательная деятельность обеспечивается с помощью миофибрилл - органелл клетки, отвечающих за сокращение. Основными компонентами миофибриллы являются мышечные нити. Последние бывают 2-х типов: толстые нити имеют диаметр 15 нм и содержат в основном нитевидный белок миозин, а тонкие имеют 7 нм в диаметре и состоят из актина, тропомиозина и тропонина .

Миозин построен из двух больших и четырех малых полипептидных цепей. Каждая большая цепь состоит из двух частей: вытянутого "хвоста", имеющего -спиральную конформацию, и глобулярной "головки". Хвосты обеих больших нитей заплетены друг вокруг друга, образуя сверхскрученную структуру длиной 140 нм. Глобулярная головка каждой большой цепи находится в комплексе с двумя малыми цепями; весь комплекс также является глобулярным. Таким образом, молекула миозина имеет две глобулярные головки и один фибриллярный двухцепочечный хвост.

Актин находится в миофибриллах в форме F-актина (F-фибриллярный). F-актин - это полимер, а мономерные единицы, из которых он построен, называются G-актином (G-глобулярный). По своей структуре F-актин похож на две нитки бус, в которых бусинками служат молекулы G-актина; нитки закручены друг вокруг друга в спиральную структуру с шагом 36-38 нм.

Молекула тропомиозина представляет собой тяж длиной 40 нм, образованный двумя переплетающимися -спиральными полипептидными цепями. Тропомиозин связан с F-актином. Каждая молекула тропомиозина охватывает семь G-актиновых глобул, причем соседние его молекулы немного перекрываются между собой, так что образуется непрерывная тропомиозиновая цепь, идущая вдоль F-актинового волокна. Поскольку F-актин состоит из двух ниток, с ним связаны и две тропомиозиновые цепочки.

Тропонин является комплексом трех белков: тропонина I, тропонина T и тропонина С. Он имеет в целом более или менее глобулярную форму и располагается на F-актине через правильные промежутки, равные примерно 38 нм.

Обеспечение сокращения энергией осуществляет АТФ. Глобулярные головки миозина связывают АТФ и быстро гидролизуют его, но не так легко освобождают продукты гидролиза - АДФ и Фн. F-актин, который связывается с миозином, образуя комплекс, называемый актомиозином, ускоряет отсоединение АДФ и Фн от миозиновых головок. Освободившиеся АТФ-связывающие участки актомиозинового комплекса могут связать новые молекулы АТФ, но, как только это происходит, индуцируется диссоциация актомиозина на актин и миозин. Такой цикл может повторяться многократно - в присутствии достаточного количества АТФ. Описанное взаимодействие актина и миозина лежит в основе молекулярного механизма сокращения.

Процесс сокращения включает в себя цикл наклона головок миозина, состоящий из 4-х стадий :

Миозин в толстых нитях содержит связанные АДФ и Фн, но не связан с актином тонких нитей.

При поступлении сигнала к сокращению глобулярные миозиновые головки со связанными АДФ и Фн прикрепляются к актину (образуется актомиозин).

Образование актомиозина ускоряет освобождение АДФ и Фн, что сопровождается наклоном головок миозина; при наклоне головки происходит скольжение все еще прикрепленной к ней тонкой актиновой нити вдоль толстой, что приводит к укорочению саркомера.

АТФ связывается с миозиновыми головками в актомиозине, и это приводит к отсоединению актина от миозина, после чего гидролиз АТФ миозином возвращает систему к первой фазе цикла.

Регуляция быстроты сокращения опосредуется ионами кальция. При низких концентрациях Са 2+ тропонин и тропомиозин препятствуют взаимодействию актина с миозином . Когда приходит нервный импульс и происходит деполяризация мембраны клеток, внутриклеточный уровень Са 2+ повышается, это вызывает Са 2+ -зависимое изменение конформации тропонина, которое передается тропомиозину, и в результате тропомиозин меняет свое положение на актиновой нити так, что ее связывающие участки становятся доступными для головок миозина.

С энергетической точки зрения, все скоростно-силовые упражнения относятся к анаэробным. Предельная продолжительность их - менее 1-2 мин. Для энергетической характеристики этих упражнений используется два основных показателя: максимальная анаэробная мощность и максимальная анаэробная емкость (способность). Максимальная анаэробная мощность. Максимальная для данного человека мощность работы может поддерживаться лишь несколько секунд. Работа такой мощности выполняется почти исключительно за счет энергии анаэробного расщепления мышечных фосфагенов - АТФ и КрФ. Поэтому запасы этих веществ и особенно скорость их энергетической утилизации определяют максимальную анаэробную мощность. Короткий спринт и прыжки являются упражнениями, результаты которых зависят от максимальной анаэробной мощности,

Для оценки максимальной анаэробной мощности часто используется тест Маргарин. Он выполняется следующим образом. Испытуемый стоит на расстоянии 6 м перед лестницей и вбегает по ней, как только можно быстрее. На 3-й ступеньке он наступает на включатель секундомера, а на 9-й - на выключатель. Таким образом, регистрируется время прохождения расстояния между этими ступеньками. Для определения мощности необходимо знать выполненную работу - произведение массы (веса) тела испытуемого (кг) на высоту (дистанцию) между 3-й и 9-й ступеньками (м)-и время преодоления этого расстояния (с). Например, если высота одной ступеньки равна 0,15 м, то общая высота (дистанция) будет равна 6 * 0,15 м =0,9 м.При весе испытуемого 70 кг и времени преодоления дистанции 0,5 с. мощность составит (70 кг*0,9 м)/0,5с = 126 кгм/а.

В табл. 1 приводятся "нормативные" показатели максимальной анаэробной мощности для женщин, и мужчин.

Таблица 1 Классификация показателей максимальной анаэробной мощности (кгм/с, 1 кгм/с = 9,8 Вт.)

Классификация

Возраст, лет

посредственная

отличная

посредственная

отличная

Максимальная анаэробная емкость. Наиболее широко для оценки максимальной анаэробной, емкости используется величина максимального кислородного долга - наибольшего кислородного долга, который выявляется после работы предельной продолжительности (от 1 до 3 мин). Это объясняется тем, что наибольшая часть избыточного количества кислорода, потребляемого после работы, используется для восстановления запасов АХФ, КрФ и гликогена, которые расходовались в анаэробных процессах за время работы. Такие факторы, как высокий уровень катехоламинов в крови, повышенная температура тела и увеличенное потребление О 2 часто сокращающимся сердцем и дыхательными мышцами, также могут быть причиной повышенной скорости потребления О 2 во время восстановления после тяжелой работы. Поэтому имеется лишь весьма умеренная связь между величиной максимального долга и максимальной анаэробной емкостью.

В среднем величины максимального кислородного долга у спортсменов выше, чем у неспортсменов, и составляют у мужчин 10,5 л (140 мл/кг веса тела), а у женщин-5,9 л (95 мл/кг веса тела). У неспортсменов они равны (соответственно) 5 л (68 мл/кг веса тела) и 3,1 л (50 мл/кг веса тела). У выдающихся представителей скоростно-силовых видов спорта (бегунов на 400 и 800 м) максимальный кислородный долг может достигать 20 л (Н. И. Волков). Величина кислородного долга очень вариативна и не может быть использована для точного предсказания результата.

По величине алактацидной (быстрой) фракции кислородного долга можно судить о той части анаэробной (фосфагенной) емкости, которая обеспечивает очень кратковременные упражнения скоростно-силового характера (спринт).

Простое определение емкости алактацидного кислородного долга состоит в вычислении величины кислородного долга за первые 2 мин восстановительного периода. Из этой величины можно выделить "фосфагенную фракцию" алактацидного долга, вычитая из алактацидного- кислородного долга количество кислорода, используемого для восстановления запасов кислорода, связанного с миоглобином и находящегося в тканевых жидкостях: емкость "фосфагенного"

(АТФ + КФ) кислородного долга (кал/кг веса.тела) = [ (О 2 -долг 2мин - 550) * 0,6 * 5 ] / вес тела (кг)

Первый член этого уравнения - кислородный долг (мл), измеренный в течение первых 2 мин восстановления после работы предельной продолжительности 2- 3 мин; 550 - это приблизительная величина кислородного долга за 2 мин, который идет на восстановление кислородных запасов миоглобина и.тканевых жидкостей;г 0,6 - эффективность оплаты алактацидного кислородного долга; 5 - калорический эквивалент 1 мл О 2 .

Типичная максимальная величина "фосфагенной фракции" кислородного долга - около 100 кал/кг веса тела, или 1,5-2 л О2-В результате тренировки скоростно-силового характера она может увеличиваться в 1,5-2 раза.

Наибольшая (медленная) фракция кислородного долга после работы предельной продолжительности в несколько десятков секунд связана с анаэробным гликолизом, т.е. с образованием в процессе выполнения скоростно-силового упражнения молочной кислоты, и потому обозначается как лактацидный кислородный долг. Эта часть кислородного долга используется для устранения молочной кислоты из организма путем ее окисления до СО2 и Н2О и ресинтеза до гликогена.

Для определения максимальной емкости анаэробного гликолиза можно использовать расчеты образования молочной кислоты в процессе мышечной работы. Простое уравнение для оценки энергии, образующейся за счет анаэробного гликолиза, имеет вид: энергия анаэробного гликолиза (кал/кг веса тела) = содержанию молочной кислоты в крови (г/л) * 0,76 * 222, где содержание молочной кислоты определяется как разница между наибольшей концентрацией ее на 4-5-й мин после работы (пик содержания молочной кислоты в крови) и концентрацией в условиях покоя; величина 0,76 - это константа, используемая для коррекции уровня молочной кислоты в крови до уровня ее содержания во всех жидкостях; 222 - калорический эквивалент 1 г продукции молочной кислоты.

Максимальная емкость лактацидного компонента анаэробной энергии у молодых нетренированных мужчин составляет около 200 кал/кг веса тела, что соответствует максимальной концентрации молочной кислоты в крови около 120 мг% (13 ммоль/л). У выдающихся представителей скоростно-силовых видов спорта максимальная концентрация молочной кислоты в крови может достигать 250-300 мг%, что соответствует максимальной лактацидной (гликолитической) емкости 400-500 кал/кг веса тела.

Такая высокая лактацидная емкость обусловлена рядом причин. Прежде всего, спортсмены способны развивать более высокую мощность работы и поддерживать ее более продолжительно, чем нетренированные люди. Это, в частности, обеспечивается включением в работу большой мышечной массы (рекрутированием), в том числе быстрых мышечных волокон, для которых характерна высокая гликолитическая способность. Повышенное содержание таких волокон в мышцах высококвалифицированных спортсменов - представителей скоростно-силовых видов спорта - является одним из факторов, обеспечивающих высокую гликолитическую мощность и емкость. Кроме того, в процессе тренировочных занятий, особенно с применением повторно-интервальных упражнений анаэробной мощности, по-видимому, развиваются механизмы, которые позволяют спортсменам "переносить" ("терпеть") более высокую концентрацию молочной кислоты (и соответственно более низкие значения рН) в крови и других жидкостях тела, поддерживая высокую спортивную работоспособность. Особенно это характерно для бегунов на средние дистанции.

Силовые и скоростно-силовые тренировки вызывают определенные биохимические изменения в тренируемых мышцах. Хотя содержание АТФ и КрФ в них несколько выше, чем в нетренируемых (на 20-30%), оно не имеет большого энергетического значения. Более существенно повышение активности ферментов, определяющих скорость оборота (расщепления и ресинтеза) фосфагенов (АТФ, АДФ, АМФ, КрФ), в частности миокиназы и креатин" фосфокиназы (Яковлев Н. Н.).

Максимальное потребление кислорода. Аэробные возможности человека определяются, прежде всего, максимальной для него скоростью потребления кислорода. Чем выше МПК, тем больше абсолютная мощность максимальной аэробной нагрузки. Кроме того, чем выше МПК, тем относительно легче и потому длительнее выполнение аэробной работы.

Например, спортсмены А и Б должны бежать с одинаковой скоростью, которая требует у обоих одинакового потребления кислорода - 4 л/мин. У спортсмена А МПК. равно 5 л/мин и потому дистанционное потребление О 2 составляет 80% от его МПК. У спортсмена Б МПК равно 4,4 л/мин н, следовательно, дистанционное потребление О 2 достигает 90% от его МПК. Соответственно для спортсмена А относительная физиологическая нагрузка при таком беге ниже (работа "легче"), и потому он может поддерживать заданную скорость бега в течение более продолжительного времени, чем спортсмен Б.

Таким образом, чем выше МПК у спортсмена, тем более высокую скорость он может поддерживать на дистанции, тем, следовательно, выше (при прочих равных условиях) его спортивный результат в упражнениях, требующих проявления выносливости. Чем выше МПК, тем больше аэробная работоспособность (выносливость), т.е. тем больший объем работы аэробного Характера способен выполнить человек. Причем эта зависимость выносливости от МПК проявляется (в некоторых пределах) тем больше, чем меньше относительная мощность аэробной нагрузки.

Отсюда понятно, почему в видах спорта, требующих проявления выносливости, МПК у спортсменов выше, чем у представителей других видов спорта, а тем более чем у нетренированных людей того же возраста. Если у нетренированных мужчин 20-30 лет МПК в среднем равно 3-3,5 л/мин (или 45- 50 мл/кг * мин), то у высококвалифицированных бегунов-стайеров и лыжников оно достигает 5-6 л/мин (или более 80 мл/кг * мин). У нетренированных женщин МПК равно в среднем 2-2,5 л/мин (или 35-40 мл/кг * мин), а у лыжниц около 4 л/мин (или более 70 мл/кг * мин).

Абсолютные показатели МПК (л О 2 /мин) находятся в прямой связи с размерами (весом) тела. Поэтому наиболее высокие абсолютные показатели МПК имеют гребцы, пловцы, велосипедисты, конькобежцы. В этих видах спорта наибольшее значение для физиологической оценки данного качества имеют абсолютные показатели МПК.

Относительные показатели МПК (мл О 2 /кг * мин) у высококвалифицированных спортсменов находятся в обратной зависимости от веса тела. При беге и ходьбе выполняется значительная работа по вертикальному перемещению массы тела и, следовательно, при прочих равных условиях (одинаковой скорости передвижения) чем больше вес спортсмена, тем больше совершаемая им работа (потребление О 2). Поэтому бегуны на длинные дистанции, как правило, имеют относительно небольшой вес тела (прежде всего за счет минимального количества жировой ткани и относительно небольшого веса костного скелета). Если у нетренированных мужчин 18-25 лет жировая ткань составляет 15- 17% веса тела, то у выдающихся стайеров - лишь 6- 7% Наибольшие относительные показатели МПК обнаруживаются у бегунов на длинные дистанции и лыжников, наименьшие - у гребцов. В таких видах спорта, как легкоатлетический бег, спортивная ходьба, лыжные гонки, максимальные аэробные возможности спортсмена правильнее оценивать по относительному МПК.

Уровень МПК зависит от максимальных возможностей двух функциональных систем: 1) кислородтранспортной системы, абсорбирующей кислород из окружающего воздуха и транспортирующей его к работающим мышцам и другим активным органам и тканям тела; 2) системы утилизации кислорода, т. е. мышечной системы, экстрагирующей и утилизирующей доставляемый кровью кислород. У спортсменов, имеющих высокие показатели МПК, обе эти системы обладают большими функциональными возможностями.

Аэробная и анаэробная производительность спортсмена.

Аэробная производительность - это способность организма выполнять работу, обеспечивая энергетические расходы за счет кислорода, поглощаемого непосредственно во время работы. Потребление кислорода при физической работе возрастает по мере увеличения тяжести и продолжительности работы. Наибольшее количество кислорода, которое организм может потребить за 1 минуту при предельно тяжелой для него работе - называется максимальным потреблением кислорода (МПК)

MПK - является показателем аэробной производительности. МПК можно определить, задавая стандартную нагрузку на велоэргометре. Зная величину нагрузки и подсчитав ЧСС, можно с помощью специальной номограммы определить уровень МПК. у спортсменов, в зависимости от специализации, - 50-90 мл/кг.

Для выполнения любой работы, а также для нейтрализации продуктов обмена и восстановления энергетических запасов необходим кислород. Количество кислорода, которое требуется для выполнения определенной работы - называется кислородным запросом

Различают суммарный и минутный кислородный запрос.

Суммарный кислородный запрос - это количество кислорода, необходимое для совершения всей работы

Минутный кислородный запрос - это количество кислорода, требующееся для выполнения данной работы в каждую конкретную минуту.

Минутный кислородный запрос зависит от мощности выполняемой работы. Наибольшей величины он достигает на коротких дистанциях. Например, при беге на 800 м он составляет 12-15 л/мин, а при марафонском - 3-4 л/мин.

Суммарный запрос тем больше, чем больше время работы. При беге на 800 м он составляет 25-30 л, а при марафонском - 450-500 л.

Анаэробная производительность - это способность организма выполнять работу в условиях недостатка кислорода, обеспечивая энергетические расходы за счет анаэробных источников.

Работа обеспечивается непосредственно запасами АТФ в мышцах, а также за счет анаэробного ресинтеза АТФ с использованием КрФ и анаэробного расщепления глюкозы (гликолиза).

Для восстановления запасов АТФ и КрФ, а также для нейтрализации молочной кислоты, образовавшейся в результате гликолиза необходим кислород. Но эти окислительные процессы могут идти уже после окончания работы. Для выполнения любой работы требуется кислород, только на коротких дистанциях организм работает в долг, откладывая окислительные процессы на восстановительный период.

Количество кислорода, которое требуется для окисления продуктов обмена, образовавшихся при физической работе, называется - кислородным долгом.

Кислородный долг можно также определить как разницу между кислородным запросом и тем количеством кислорода, которое организм потребляет во время работы.



Показателем анаэробной производительности является - максимальный кислородный долг.Максимальный кислородный долг -это максимально возможное накопление продуктов анаэробного обмена, требующих окисления, при котором организм еще способен выполнять работу. Чем выше тренированность, тем больше м В среднем величины максимального кислородного долга у спортсменов выше, чем у неспортсменов, и составляют у мужчин 10,5 л (140 мл/кг веса тела), а у женщин-5,9 л (95 мл/кг веса тела). У неспортсменов они равны (соответственно) 5 л (68 мл/кг веса тела) и 3,1 л (50 мл/кг веса тела). У выдающихся представителей скоростно-силовых видов спорта (бегунов на 400 и 800 м) максимальный кислородный долг может достигать 20 л (Н. И. Волков). Величина кислородного долга очень вариативна и не может быть использована для точного предсказания результата. аксимальный кислородный долг.

В кислородном долге различают 2 фракции (части): алактатную и лактатную. Алактатная фракция долга идет на восстановление запасов КрФ и АТФ в мышцах.Лактатная фракция (лактаты - соли молочной кислоты) - большая часть кислородного долга. Она идет на ликвидацию молочной кислоты, накопившейся в мышцах. При окислении молочной кислоты образуются безвредные для организма вода и углекислый газ.Алактатная фракция преобладает в физических упражнениях, длящихся не более 10с, когда работа идет в основном за счет запасов АТФ и КрФ в мышцах. Лактатная преобладает при анаэробной работе большей длительности, когда интенсивно идут процессы анаэробного расщепления глюкозы (гликолиз) с образованием большого количества молочной кислоты.При интенсивной работе длящейся не менее 5-ти минут, наступает момент, когда организм не в состоянии обеспечить свои возрастающие потребности в кислороде. Поддержание достигнутой мощности работы и дальнейшее её увеличение обеспечивается за счет анаэробных источников энергии.Появление в организме первых признаков анаэробного ресинтеза АТФ - называется порогом анаэробного обмена (ПАНО). ПAHO считается в процентах от МПК. У спортсменов в зависимости от квалификации ПАНО равен 50-80 % от МПК. Чем выше ПАНО, тем больше возможностей у организма выполнять тяжелую работу за счет аэробных источников, более выгодных энергетически. Поэтому у спортсмена, имеющего высокий ПАНО (65% от МПК и выше), при прочих равных условиях будет более высокий результат на средних и длинных дистанциях.



В системе оздоровительной физической культуры выделяют следующие основные направления:

Оздоровительно-рекреативное,

Оздоровительно-реабилитационное,

Спортивно-реабилитационное, гигиеническое.

Оздоровительно-рекреативная физическая культура - это отдых, восстановление сил с помощью средств физического воспитания (спортивные игры, туризм, охота и т.д.). Рекреация означает отдых, восстановление сил, израсходованных в процессе труда.

Оздоровительно-реабилитационная физическая культура - это специально направленное использование физических упражнений в качестве средств лечения заболеваний и восстановления функций организма, нарушенных или утраченных вследствие заболеваний, травм, переутомления и др.

Оздоровительно-реабилитационное направление в нашей стране представлено в основном тремя формами:

· группы ЛФК при диспансерах, больницах

· группы здоровья в коллективах физической культуры

· самостоятельные занятия.

Большую роль в системе подготовки спортсмена играет спортивно-реабилитационная физическая культура. Она направлена на восстановление функциональных и приспособительных возможностей организма после длительных периодов напряженных тренировок и соревновательных нагрузок, особенно при перетренировке и ликвидации последствий спортивных травм.

Гигиеническая физическая культура - это различные формы физической культуры, включенные в рамки повседневного быта (утренняя гимнастика, прогулки и т.д.)

Закаливание - это система специальной тренировки терморегуляторных процессов организма, включающая в себя процедуры, действие которых направлено на повышение устойчивости организма к переохлаждению или перегреванию. В результате закаливания увеличивается работоспособность, снижается заболеваемость, особенно простудного характера, улучшается самочувствие.

Наиболее сильная закаливающая процедура - плавание в ледяной воде - имеет ряд противопоказаний, особенно противопоказано: детям, подросткам и людям, постоянно страдающим заболеваниями верхних дыхательных путей. При длительных перерывах в закаливании его эффект снижается или теряется совсем.

Задачами физкультуры в целях профилактики профессиональных заболеваний являются улучшения функционального состояния и предупреждения прогрессирования болезни: повышение физической и умственной работоспособности, адаптация к внешним факторам; снятие утомлениям повышение адаптационных возможностей; воспитание потребности в закаливании, занятиях оздоровительной физкультурой.

Система реабилитации включает уроки физкультуры, желательно на свежем воздухе, занятие ЛФК, терренкур, прогулки на лыжах, езду на велосипеде. Предпочтительнее циклические виды спорта, особенно при заболеваниях сердца, легких, ожирении .

При заболеваниях сердечно-сосудистой, дыхательной и эндокринной систем- упражнения в ходьбе, катание на коньках.

При проведении занятий с работниками, имеющими изменения опорно-двигательного аппарата, важны профилактические занятия, направленные в первую очередь на придание работнику правильной осанки и на нормализацию функций ОДА. Не следует допускать чрезмерных нагрузок. Упражнения с гантелями, мячами и на тренажерах должны выполняться только в щадящем для позвоночника режиме, лежа и с включением в конце занятий упражнений на растягивание и на релаксацию.

Виды оздоровительной физической культуры
Существует много форм физической культуры, которые используются для нормализации функционального состояния человека, а так же для профилактики заболеваний.

Утренняя гигиеническая гимнастика (УГГ) - одно из средств физической культуры. Она развивает силу, гибкость, координацию движений. Улучшает деятельность внутренних органов, вызывает подъем эмоций, особенно если упражнение выполняется под музыку. УГГ лучше выполнять утром в сочетанием с закаливанием, но не очень рано, особенно больным с заболеванием сердечно- сосудистой системы.

Подвижные спортивные игры нормализация психо-эмоционального состояния.

Ходьба и бег . Ходьба как физическое упражнение - ценное средство для улучшения деятельности ЦНС , сердечно –сосудистой и дыхательной систем . Ходьба должна быть продолжительной, но не утомительной.

Бег - физическое упражнение с большой нагрузкой. Он развивает выносливость, особенно полезно для профилактики заболевания сердечно-сосудистой системы, ожирения и др. Его лучше сочетать с ходьбой и дыхательными упражнениями. Ходьбу и бег можно проводить днем и вечером.

Велосипедный спорт велопрогулки показаны при заболеваниях сердечно- сосудистой, дыхательной систем и нарушение обмена веществ, а также при последствии травм суставов ног (для разработки тугоподвижности и тренировки мышц). Зимой велопрогулки заменяются упражнениями на велотренажерах.

Плавание - отличное тренирующее средство и закаливающее. Плавание усиливает деятельность кардиоресператорной системы и обмен веществ, а при травмах и заболеваниях позвоночника ведет к исчезновению болей и улучшению подвижности в суставах.

Особенно важно сочетание физических нагрузок с закаливанием для работников, имеющих отклонения в состоянии здоровья. Так как такие занятия повышают общую тренированность организма, способствуют нормализации обменных процессов, функционального состояния, а так же ведут к усилению закаливания и предупреждают простудные заболевания.



  • Разделы сайта