Функциональные изменения которые происходят в организме. Функциональные изменения в организме при работе и их анализ. Изменения функций различных органов и систем организма

Функциональные изменения в организме при физических упражнениях

Движение является основным стимулятором жизнедеятельности организма человека. При недостатке движений наблюдается, как правило, ослабление физиологических функций, понижается тонус и жизнедеятельность организма.

Физические упражнения - это естественные и специально подобранные движения, применяемые в физическом воспитании. Их отличие от обычных движений заключается в том, что они имеют целевую направленность и специально организованы для укрепления здоровья, восстановления нарушенных функций.

Физические упражнения воздействуют на все группы мышц, суставы, связки, которые делаются крепкими, увеличиваются объем мышц, их эластичность, сила и скорость сокращения. Усиленная мышечная деятельность вынуждает работать с дополнительной нагрузкой сердце, легкие и другие органы и системы организма повышая функциональные возможности человека, его сопротивляемость неблагоприятным воздействиям внешней среды. Регулярные занятия физическими упражнениями в первую очередь воздействуют на опорно-двигательный аппарат, мышцы. При выполнении физических упражнений усиливается потоотделение. Во время физических нагрузок усиливается кровоток: кровь приносит к мышцам кислород и питательные вещества, которые в процессе жизнедеятельности распадаются, выделяя энергию. При движениях в мышцах дополнительно открываются резервные капилляры, количество циркулирующей крови значительно возрастает, что вызывает улучшение обмена веществ.

Действие физических упражнений тесно связано с физиологическими свойствами мышц. Каждая поперечнополосатая мышца состоит из множества волокон. Мышечное волокно обладает способностью отвечать на раздражения самой мышцы или соответствующего двигательного нерва. По мышечному волокну проводится возбуждение - это свойство обозначают как проводимость. Мышца способна изменять свою длину при возбуждении, что определяется как сократимость. Сокращение одиночного мышечного волокна проходит две фазы: сокращения - с расходованием энергии и расслабления - с восстановлением энергии.

В мышечных волокнах во время работы происходят сложные биохимические процессы с участием кислорода (аэробный обмен) или без него (анаэробный обмен). Аэробный обмен доминирует при кратковременной интенсивной мышечной работе, а анаэробный - обеспечивает умеренную физическую нагрузку в течение длительного времени. Кислород и вещества, обеспечивающие работу мышцы, поступают с кровью, а обмен веществ регулируется нервной системой. Мышечная деятельность связана со всеми органами и системами по принципам моторно-висцеральных рефлексов; физические упражнения вызывают усиление их деятельности. Сокращение мышц происходит под влиянием импульсов из центральной нервной системы.

Центральная нервная система регулирует движения, получая импульсы от проприорецепторов, которые находятся в мышцах, сухожилиях, связках, капсулах суставов, надкостнице. Ответная двигательная реакция мышцы на раздражение называется рефлексом. Путь передачи возбуждения от проприорецептора в ЦНС и ответная реакция мышцы составляют рефлекторную дугу.

Физические упражнения стимулируют физиологические процессы в организме через нервный и гуморальный механизмы. Мышечная деятельность повышает тонус ЦНС, изменяет функцию внутренних органов и особенно системы кровообращения и дыхания по механизму моторно-висцеральных рефлексов. Усиливаются воздействия на мышцу сердца, сосудистую систему и экстракардиальные факторы кровообращения; усиливается регулирующее влияние корковых и подкорковых центров на сосудистую систему. Физические упражнения обеспечивают более совершенную легочную вентиляцию и постоянство напряжения углекислоты в артериальной крови.

Физические упражнения осуществляются с одновременным участием и психической, и физической сферы человека. Основой в методе лечебной физкультуры является процесс дозированной тренировки, который развивает адаптационные способности организма.

Под воздействием физических упражнений нормализуется состояние основных нервных процессов - повышается возбудимость при усилении процессов торможения, развиваются тормозные реакции при патологически выраженной повышенной возбудимости. Физические упражнения формируют новый, динамический стереотип, что способствует уменьшению или исчезновению патологических проявлений.

Поступающие в кровь продукты деятельности желез внутренней секреции, продукты мышечной деятельности вызывают сдвиги в гуморальной среде организма. Гуморальный механизм во влиянии физических упражнений является вторичным и осуществляется под контролем нервной системы.

Физические упражнения: - стимулируют обмен веществ, тканевой обмен, эндокринную систему;

Повышают иммунобиологические свойства, ферментативную активность, способствуют устойчивости организма к заболеваниям;

Положительно влияют на психоэмоциональную сферу, улучшают настроение;

Оказывают на организм тонизирующее, трофическое, нормализующее влияние и формируют компенсаторные функции.

PAGE 2

БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ

УНИВЕРСИТЕТ

Кафедра клинической токсикологии и профпатологии с курсом ИПО

Утверждаю:

_____________________

Заведующий кафедрой, профессор

З.С. Терегулова

"____"__________200_ г.

МЕТОДИЧЕСКАЯ РАЗРАБОТКА ЛЕКЦИИ № 3

01. ТЕМА: Функциональные изменения в организме при работе

и их анализ

02. Медико-профилактический факультет, 4 курс

03. Раздел: Основы физиологии и психологии труда

04. Лекционный курс 9 семестра

05. Продолжительность: 2 часа (90 мин.)

06. Контингент: Студенты 4 курса медико-профилактического факультета

07. ОБЩАЯ ЦЕЛЬ ЛЕКЦИИ: для создания базовых представлений о влиянии трудовой деятельности и её условий, рассмотреть и обсудить классические сведения об изменениях в функциональном состоянии работающего человека.

ЧАСТНЫЕ ДИДАКТИЧЕСКИЕ ЦЕЛИ (ЗАДАЧИ):

1. Создать понятие о функциональном состоянии и анализе изменений её характеристик.

2. Показать, что при выполнении работы происходят закономерные процессы изменения физиологического состояния человека.

3. Рассказать об изменениях в отдельных органах и системах работающего организма, дать основы для физиологического анализа влияния труда.

4. Обсудить аспекты центрально-нервной регуляции и энергетики функциональных изменений в организме человека при работе

08.Оснашение:

Схема: Краткий перечень изменений в органах и системах человеческого организма при выполнении работы

Таблица: Классификация труда по энерготратам и потреблению кислорода

Таблица: Изменение объема воздуха в лёгких в покое и при работе

Таблица: Зависимость величины минутного объема сердца от мощности мышечной работы и потребления кислорода

Таблица: Скорость восстановления частоты пульса в зависимости от интенсивности работы

Таблица: Число капилляров в мышцах при покое и работе

09. Новая информация (отсутствующая в предыдущем обучении): закономерности динамики функционального состояния работающего человека

10. ПЛАН ЛЕКЦИИ:

1 час: Затраты энергии при различных видах работы.

45 мин

Особенности анализа энергетических изменений

Особенности анализа функциональных изменений отдельных

органов и систем при работе

Обобщённые характеристики физиологических сдвигов

у работающего человека

2 час: Изменения функционального состояния отдельных

45 мин

органов и систем.

Особенности анализ динамики функциональных показателей

по органам и системам работающего человека

Особенности изменений в центральной нервной системе

работающего организма

11. Контроль усвоения материала: активный опрос в конце лекции

Вопросы:

1. Определите термин: "функциональное состояние человека"

2. Определите термин: "функциональное состояние работающего человека"

3. Дайте характеристику общих изменений в системе крови при любой работе.

4. Перечислите основные химические изменения в крови при работе.

5. Норма сахара в крови человека в покое?

6. До каких величин может колебаться содержание сахара в крови работающего человека?

7. В чём биологическая сущность изменений крови при работе?

8. Почему у тренированных лиц при чрезмерной физической работе накопление молочной кислоты в крови, другие изменения в ней носят более благоприятный характер, чем у нетренированных?

9. Что такое "резервная щёлочность крови"?

10. Что такое кислородная ёмкость крови?

11. Что препятствует связыванию кислорода кровью при выполнении физической работы?

12. Что способствует лучшей отдачи кислорода кровью при работе?

13.Число дыханий в покое?

14. Минутный обьём сердца в покое?

15.Предельные величины числа дыханий при физической нагрузки?

16. Предельные величины минутного объёма сердца в покое?

17. За счет каких механизмов происходит увеличение минутного объёма сердца при физической работе?

18. Какие факторы трудовой деятельности изменяют кровяное давление в организме работающего человека?

12. СПИСОК ЛИТЕРАТУРНЫХ ИСТОЧНИКОВ:

  1. Алексеев С.В., Усенко В.Р. Гигиена труда. М., Мед., 1988, 576с.
  2. Белозёрова Л.М. Возрастная работоспособность лиц умственного и физического труда // Физиологические и медицинские вопросы нетрадиционных форм производственной деятельности человека: В 2 ч. - Тюмень. - 1991. - Ч.2. - С. 179 - 182.
  3. Быков К.М., Владимиров Г.Е., Делов В.Е., Конради Г.П., Слоним А.Д. Учебник физиологии. М., 1975
  4. Виноградов М. Проблема утомления. М., 1978 г. - 298 с.
  5. Гигиена труда. Гигиенические критерии оценки условий труда по показателям вредности и опасности факторов производственной среды, тяжести и напряжённости трудового процесса: Руководство (Р 2.2.755 - 99) / Государственная система санитарно-эпидемиологического нормирования Российской Федерации. Издание официальное. - Москва, Минздра`в России, 1999 - 150 с.
  6. Горшков С.И., Золина З.М., Мойкин Ю.В. Методы исследований в физиологии труда. М.: Медицина, 1974. - 311 с.
  7. Евстафьев В.Н. Физическая работоспособность и эргономические показатели функционального состояния сердечно-сосудистой системы у плавсостава // Гиг. труда. - 1989. - № 7. - 22 - 25.
  8. Карамова Л.М., Красовский В.О. О системном моделировании зависимостей функционального напряжения работающего человека // Мед. труда. - 1993. - № 10 - 12. - С. 36 - 38.
  9. Карамова Л.М., Красовский В.О. Сравнительная оценка функционального состояния по количеству используемых функций в трудовой деятельности // Актуальные вопросы физиологии умственного труда: Тез. докл. симпозиума. – Киев, 1993. - С. 26
  10. Красовский В.О., Аскаров А.Ф. Компактная укладка для физиолого-гигиенических исследований // Рационализаторское предложение № 6/86 от 22.12.86. Уфимский НИИ гигиены и профессиональных заболеваний.
  11. Красовский В.О. Прогноз функционального состояния научных сот рудников // Акт. вопросы физиологии умственного труда: Тез. докл. симпозиума. - Киев. - 1993. - С. 26
  12. Красовский В.О. Способ оценки физиологических сдвигов по развёрнутому изображению их показателей. Рационализаторское предложение № 270 от 19.12.2000 г. Уфимский НИИ медицины труда и экологии человека.
  13. Конради Г.П., Слоним А.Д., Фарфель В.С. Общие основы физиологии труда. - М. ; Л., Биомедгиз, 1934. - 672 с.
  14. Кулак А.И., Гурипович Л.А., Васильевская К.В. и др. Физиологическая оценка тяжести и напряжённости труда рабочих и служащих различного возраста // Геронтология и гериатрия: Ежегодник (Социальная среда, образ жизни и старение). Киев, 1970. - С. 106 - 111.
  15. Кулак И.А. Физиология утомления при умственной и физической работе человека. Минск: Беларусь, 1968. - 272 с.
  16. Марищук В.Л. Функциональное состояние и работоспособность // Методология исследований по инженерной психологии и психологии труда. - Л., 1974. - С. 81-95
  17. Розенблат В.В. Проблема утомления. М.: Медицина, 1975 - 240 с.
  18. Руководство к практическим занятиям по гигиене труда / Под ред. проф. А.М. Шевченко. - Киев, 1986.- 336 с.
  19. Руководство по физиологии труда / Под ред. З.М. Золиной, Н.Ф. Измерова. - М.: Медицина, 1983. - 528 с.,ил.
  20. Сапов И.А., Солодков А.С. Состояние функций организма и работоспособность моряков. Л.: Медицина, Ленинградское. отделение, 1980. - 192 с.: ил.
  21. Человеческий фактор: В 6 т. / Т1. Эргономика - комплексная научно-техническая дисциплина: Пер с англ. / Ж. Кристенсен, Д. Мейстер, П. Фоули и др. - М.: Мир, 1991. - 599 с., ил.

ТЕКСТ ЛЕКЦИИ

Функциональное состояние организма - совокупность характеристик физиологических функций и психофизиологических качеств, определяющих уровень активности функциональных систем организма, особенно жизнедеятельности и работоспособности организма. Для работающего организма - это совокупность тех функций, возможностей и качеств личности, которые несут наибольшую нагрузку в обеспечении профессиональной деятельности.

Сейчас производительность труда человека определяется его энерговооруженностью, способностью управлять и применять машины, оборудование для выполнения требуе мой работы.

Способность человека к трудовой деятельности, в том числе и к управлению огромными производственными комплексами (машинами) во многом зависит от динамического рабочего стереотипа - относительно устойчивой целостной системой условно-рефлекторных связей, создаваемых в процессе обучения и упражнения и, являющихся физиологической основой навыков, необходимых для обеспечения высокого уровня профессиональной работоспособности.

Работоспособность человека (Син.: трудоспособность) в общем - это способность обеспечить некоторое количество и качество работы (труда). С других позиций, работоспособность - величина функциональных возможностей организма (физиологической системы, органа), характеризующаяся количеством и качеством работы при максимальной напряжённости, интенсивности и/или длительности труда.

Нам представляется, что термин “трудоспособность” более уместен при определении производительности человека в очень длительном периоде, а термин “работоспособность” применим для обозначения потенции к труду за один рабочий день или смену.

Важно также проводить четкую грань между понятиями “физиологическая функция” и её “показателями”, о чём мы уже говорили. Напомню, что физиологическая функция - свойство, качество, реакция, способность организма проявлять жизненные потенции.

Функциональные изменения в работающем организме не происходят параллельно энергозатратам, поскольку имеется множество причин и обстоятельств, влияющих на эту зависимость. Однако, в этом вопросе, всегда можно выявить некоторые значимые, закономерные взаимозависимости, что и обсудим в этой лекции.

Сейчас, в связи с непрерывно растущей механизацией и автоматизацией трудовых процессов, остается все меньше видов работ, выполнение которых требует больших энергетических затрат. По потреблению кислорода и энергетическим затратам трудовые процессы можно отнести к трём-четырём типам, представленным в нижеследующей таблице 1.

Таблица 1

Классификация труда по энерготратам и потреблению кислорода

Характер

работы

Потребление

кислорода

л/мин

Энерготраты ккал/мин

Необходимая энергия ккал/сутки

Лёгкая

До 0.5

До 2.5

2200-2600

Средней тяжести

От 0.5 до 1.0

2.5 – 5.0

2800-3400

Тяжёлая

Больше 1.0

Выше 5.0

3600-4000

Очень тяжёлая

4000-6000

Использование показателя энергетических затрат для оценки тяжести работы лиц различных профессий или лиц одной и той же профессии ограничивается прежде всего, разным удельным весом статического напряжения при различных работах. На расход энергии влияют также степень тренированности, формы организации труда, режим труда и отдыха, состояние внешней атмосферы (высокая или низкая температура воздуха, газы, пыль) и др.

Сами по себе энергетические показатели не дают представления о функциональном состоянии организма в целом, зависящего от состояния центральной нервной системы, сердечно-сосудистой и дыхательной систем, а также биохимических процессов в организме.

Известно, что время восстановления различных функций организма после прекращения работы и восстановления потребления кислорода не совпадает: функции сердечно-сосудистой и дыхательной систем (их показатель - дыхательный коэффициент) восстанавливаются позже, чем потребление кислорода. Но, при прочих равных условиях показатели расхода энергии могут быть использованы для сравнительной оценки различных режимов труда и отдыха, оценки эффективности вновь введенного элемента в трудовой процесс.

Начнём с того, что любая работа предполагает изменения в гомеостазе, а то есть в изменениях внутренней среды организма. Во время работы происходят существенные морфологические, физические и химические изменения крови.

Морфологические изменения претерпевает как красная, так и белая кровь.

Количество эритроцитов, гемоглобина и лейкоцитов при работе увеличивается; при этом, чем интенсивнее работа, тем больше увеличивается количество эритроцитов, гемоглобина и лейкоцитов. Повышение количества эритроцитов и лейкоцитов в связи с работой происходит за счет как поступления их из депо (селезенки), так и усиления эритропоэза (в крови увеличивается количество ретикулоцитов) и лейкопоэза. Биологическая сущность изменений крови состоит в компенсаторном процессе, вызываемом повышенной потребностью организма в кислороде.

Механизм регуляции происходящих изменений условно-безусловно-рефлекторный: рефлекторное сокращение селезенки, раздражение костного мозга через хеморецепторы.

Физические изменения крови в связи с работой характеризуются изменениями осмотической стойкости эритроцитов, осмотического давления и вязкости. Осмотическая стойкость эритроцитов в одних случаях может быть повышена, а в других – понижена. В частности, понижение её наблюдается при тяжелой работе, выраженном ацидозе и особенно резко, при высокой температуре воздуха.

Осмотическое давление в эритроцитах (концентрация осмотически активных веществ поваренной соли, молочной кислоты) при работе резко повышается.

Вязкость крови возрастает вследствие увеличения количества форменных элементов и уменьшения в плазме крови воды, которая из крови диффундирует в работающие мышцы.

К основным химическим изменениям крови при работе относятся изменения содержания сахара, молочной кислоты, щелочных резервов крови, газов крови.

Содержание сахара в крови человека в покое может колебаться от 60 до 150 мг%; наиболее часто оно составляет 80-90 мг %. Поступление сахара в кровь и потребление его тканями регулируются взаимосвязанными системами: симпатико-адреналовая система увеличивает поступление сахара из печени в кровь, инсулино-парасимпатическая система понижает содержание сахара в крови.

Инсулин способствует усилению обеих фаз углеводного обмена окисления и рёсинтеза, а также повышает проницаемость клеточных мембран, способствуя проникновению сахара в ткани.

В начале работы количество сахара в крови повышается, что объясняется условно-рефлекторными влияниями. Таков же механизм увеличения содержания сахара в крови и для предрабочего состояния. Отметим, что больше всего содержание сахара в крови наблюдается при работе, связанной с высоким уровнем эмоционального напряжения.

При выполнении привычной работы, особенно тренированными лицами, содержание сахара в крови у них несколько снижается и держится примерно на одном уровне длительное время. Значительное снижение обычно наступает при очень тяжелой и длительной работе. У нетренированных лиц может наступить столь резкое уменьшение содержания сахара в крови, что оно окажется опасным для жизни. При переутомлении и перенапряжение может возникнуть гипогликемическая кома.

Введение сахара в организм во время работы вызывает увеличение концентрации его в крови и благоприятно влияет на повышение работоспособности.

Молочная кислота в крови в покое содержится в пределах 10-25 мг%. При легкой работе, например при ходьбе и ряде производственных работ, содержание молочной кислоты в крови не повышается: она успевает окислиться и ресинтезироваться там, где образовалась, т. е. в мышцах, и в кровь не поступает. При работе средней тяжести в первые минуты возможно повышение содержания молочной кислоты в крови. При дальнейшей же работе, даже длительной, содержание молочной кислоты в крови не превышает исходного уровня.

Это объясняется тем, что при наличии микропауз в деятельности - при кратковременном расслаблении мышц, молочная кислота успевает окислиться и ресинтезироваться в них.

Как правило, молочная кислота может накапливаться в крови при очень интенсивной работе, иногда в значительном количестве. Такая работа бывает обычно кратковременной и характеризуется недостаточным снабжением кислородом, образованием большого кислородного долга.

У людей, тренированных к физической работе, образование молочной кислоты меньше, чем у нетренированных, а ресинтез происходит более быстрыми темпами.

До сих пор мы говорили о кислотных изменениях. Но, нельзя забывать и о щелочных резервах крови, поскольку при работе возникает необходимость усиленного удаления и/или связывания образующейся углекислоты.

Количество углекислоты, которое кровь способна связать при парциальном давлении углекислоты 44 мм рт. ст. и постоянной температуре 18°, носит название резервной щелочности крови и является показателем способности крови связывать кислые продукты.

Резервная щелочность крови выражается в объемных процентах углекислоты. У людей в покое резервная щелочность плазмы крови значительно колеблется (43-67 об %). На уровень щелочных резервов крови большое влияние оказывает тренированность к физической работе. Показано, что у тренированных людей резервная щелочность на 10-20% выше, чем у нетренированных. Обычно можно наблюдать значительное снижение щелочных резервов при кратковременной, но очень интенсивной работе. При этом отмечается совершенно четкая обратная зависимость уровня щелочных резервов от содержания в крови молочной кислоты: чем больше содержание молочной кислоты, тем ниже уровень щелочных резервов.

Снижение щелочных резервов крови можно также наблюдать у рабочих в начале обучения профессиональной работе. По мере приобретения навыков и закрепления их, т. е. по мере повышения тренированности, уровень щелочных резервов возрастает.

При кратковременной работе большой интенсивности снижение уровня щелочных резервов можно поставить в зависимость от тяжести работы. При длительных работах средней тяжести такой зависимости между выполняемой работой и уровнем щелочных резервов обнаружить нельзя. Аналогичные изменения, как указывалось выше, претерпевает содержание молочной кислоты в крови при длительной работе средней тяжести, что указывает на тесную связь состояния буферной системы крови и накопления в крови кислых продуктов.

Кровь приносит клеткам кислород, питающие вещества и уносит переработанные отходы. Особым вопросом является изменение газового состава крови в процессе работы.

Количество кислорода в миллилитрах, связанное 100 мл крови при полном насыщении, носит называние кислородной емкости крови. Средняя величина кислородной емкости крови для мужчин - 18,3 мл, для женщин - 16,5 мл. В целостном организме насыщение крови кислородом зависит от парциального давления кислорода в альвеолярном воздухе. При давлении кислорода 120-130 мм рт. ст. гемоглобин насыщается приблизительно на 100%. Однако практически насыщение колеблется в пределах 90-95%.

Сдвиг реакции крови в кислую сторону вследствие увеличения содержания углекислоты и молочной кислоты при работе препятствует связыванию кислорода гемоглобином.

При нормальном парциальном давлении достигается насыщение крови кислородом, при низком же парциальном давлении насыщение крови кислородом может резко снизиться. В то же время сдвиг реакции в кислую сторону способствует лучшей отдаче кислорода тканям и более быстрой диссоциации оксигемоглобина.

В капиллярах кислород отдается тканям; следовательно, в венозной крови содержание его ниже, чем в артериальной. В покое различные ткани организма забирают 20- 30% кислорода, при работе же потребление кислорода тканями достигает 70%.

Отношение артериовенозной разности кислорода к кислородной емкости носит название коэффициента утилизации кислорода. У тренированных людей он конечно, выше.

Содержание углекислоты в крови значительно колеблется в зависимости от наличия в ней различных катионов и интенсивности легочной вентиляции. В покое в артериальной крови у здоровых людей содержание углекислоты колеблется в пределах 44,6-54,7 об. %, а в венозной крови - в пределах 48,3-60,4 об. %. При работе снижению содержания углекислоты в крови способствуют связывание углекислоты катионами, а также вымывание кислоты из крови гипервентиляцией лёгких.

Изменения в крови не является единственными и отдельными в целостном работающем организме. Рассмотрим изменения дыхательной функции. Функция дыхания весьма лабильна и значительно изменяется в связи с работой. Так, выдох при работе осуществляется с участием грудных мышц, сокращение которых уменьшает объем грудной клетки и тем самым жизненную емкость легких. Уменьшение жизненной емкости легких при работе компенсируется перераспределением воздуха в легких. Данное утверждение наглядно иллюстрирует нижеследующая таблица 2.

Таблица 2

Изменения объёма воздуха в лёгких в покое и при работе

Условия

опыта

Дыхательный воздух

Резервный

воздух

Дополнительный воздух

Жизненная

ёмкость лёгких

Покой

0,93

1,77

1,50

5,66

Работа

2,18

0,80

0,86

5,36

Как видно из таблицы, объем дыхательного, т. е. альвеолярного воздуха в работе увеличивается примерно в 2,5 раза за счет объемов резервного и дополнительного воздуха. Жизненная емкость легких может уменьшаться также в зависимости от рабочей позы: если жизненную емкость при спокойном состоянии в вертикальном положении принять за 100, то при сгибании туловища вперед она будет составлять 88,5, а при сгибании назад - 75. При легкой и кратковременной работе может наблюдаться, наоборот, увеличение жизненной емкости легких,

В покое число дыханий в минуту колеблется в пределах 12-24, а легочная вентиляция в пределах 4-10 л, чаще 6-8 л. При работе эти величины возрастают в несколько раз. В покое человек потребляет кислорода 200-300 мл в минуту, а при тяжелой работе в 10-15 раз больше. Доставка такого большого количества кислорода обеспечивается путем значительного усиления функции легких. Легочная вентиляция может быть увеличена до 100-150 л/мин из-за учащения дыхания, и главным образом, увеличения глубины вдоха. У тренированных людей увеличение легочной вентиляции осуществляется за счет усиления глубины дыхания в большей степени, чем у нетренированных.

Величина легочной вентиляции растет пропорционально мощности работы и, следовательно, потреблению кислорода. Такая закономерность позволяет на основании определения величины легочной вентиляции с некоторым приближением судить о величине потребления кислорода ж тем самым об энергетических затратах.

В регуляции дыхания в связи с работой главную роль играет центральная нервная система. Опыты показали увеличение легочной вентиляции в предрабочем (предстартовом) состоянии. Образующиеся в процессе работы условно-рефлекторные связи между интенсивностью работы и легочной вентиляцией при многократном повторении одной и той же работы настолько закрепляются, что соответствующая легочная вентиляция становится неотъемлемым элементом динамического стереотипа. Примером формирования такого стереотипа являются ныряльщики - ловцы жемчуга.

Важную роль в регуляции дыхания при работе играют также гуморальные факторы, обусловливающие изменения рН крови, напряжения углекислоты, кислорода и оказывающие регулирующее влияние через дыхательный центр.

Параллельно с описанными изменениями в ходе работы происходят изменения и в сердечно-сосудистой системе . В покое минутный объем сердца колеблется в пределах 3,5-5,5 л, при мышечной работе он достигает 30-40 л. Между величиной минутного объема сердца, мощностью мышечной работы и потреблением кислорода существует линейная зависимость. Она справедлива только тогда и только тогда, когда состояние потребления кислорода достаточно устойчиво. Это видно из данных, приведенных в нижеследующей таблице 3.

Таблица 3

Зависимость величины минутного объёма сердца от мощности

мышечной работы и потребления кислорода

Работа,

КГм

Минутный объем, л/мин

Ударный объем, мл

Потребление кислорода, л/мин

11.0

16.6

1.76

1080

22.6

1452

35.0

Увеличение минутного объема сердца происходит за счет учащения сокращений и увеличения ударного (систолического) объема сердца. Систолический объем сердца в покое колеблется в пределах 60- 80 мл; при работе же он может увеличиваться вдвое и более, что зависит от функционального состояния сердца, условий наполнения его кровью, тренировки.

У хорошо тренированного человека систолический объем может при умеренной частоте пульса достигать высоких величин (до 200 мл).

Устанавливающийся в связи с работой, новый уровень деятельности сердечно-сосудистой системы, обеспечивается в основном благодаря нервным, и в меньшей мере, гуморальным влияниям. При этом образование условно-рефлекторных связей способствует установлению этого нового уровня еще до начала работы. Во время работы происходят дальнейшие изменения деятельности сердечно-сосудистой системы.

Поступление крови в сердце обусловливается венозным притоком и длительностью диастолы. Венозный приток при работе увеличивается. Рефлекторно, воздействием на проприорецепторы, вызывается расширение сосудов мышц и поверхностных сосудов и, одновременно сужение внутренних сосудов - “чревный рефлекс”.

Кровь из мышц перегоняется в вены и сердце, причем скорость движения крови пропорциональна количеству мышечных движений (действие “мышечного насоса”). Такое же действие оказывает перемещение диафрагмы. Длительность диастолы во время работы укорачивается. Механизм укорочения рефлекторный - через барорецепторы в устьях полых вен и проприоцепторы работающих мышц. Общий результат - учащение сердечных сокращений.

Оптимальные условия для работы сердца создаются тогда, когда скорость диастолического наполнения и длительность диастолы соответствуют друг другу. При недостаточном или избыточном кровенаполнении сердце вынуждено работать за счет учащения сокращений.

Эффективность деятельности сердца зависит не только от его функционального состояния, мощности мускулатуры, состояния питания, нервной регуляции, но и от способности развивать силу сокращения в зависимости от диастолического наполнения. Величина ударного объема, таким образом, пропорциональна величине венозного притока.

Ритм сердечной деятельности можно оценить по частоте пульса. Для характеристики мышечной работы учитывается как частота пульса во время работы, так и скорость восстановления его после работы. Обе эти функции зависят от интенсивности и длительности работы. Для работы умеренной тяжести характерна более или менее постоянная частота пульса. При тяжелой работе наблюдается непрерывный рост ее. Скорость восстановления частоты пульса зависит от интенсивности работы, что и следует из нижеследующей таблицы 4.

Таблица 4

Скорость восстановления частоты пульса

в зависимости от интенсивности работы

Характер

работы

Величина учащения пульса (в минуту)

Время восстановления исходной величины пульса (минуты)

Умеренная

Значительная

Тяжёлая

У тренированного человека частота пульса при прочих равных условиях всегда меньше, чем у нетренированного. От состояния сердечно-сосудистой системы зависит кровоснабжение работающих органов. Регуляция сосудистой системы условно-безусловно-рефлекторная и местная гуморальная.

При этом особую роль в сосудистой регуляции играют продукты обмена (гистамин, адениловая кислота, ацетилхолин), особенно гистамин, сильно расширяющий мелкие сосуды. Большая роль в регуляции сосудов принадле-жит продуктам желез внутренней секреции - адреналину, суживающему сосуды внутренних органов, и вазопрессину (гормон мозгового придатка), действующему на артериолы и капилляры.

Гуморальная регуляция сосудистой системы может осуществляться непосредственно действием на мышечную стенку сосудов и рефлекторно через интерорецепторы.

Нервная регуляция сосудистой системы весьма чувствительна, и этим объясняется большая подвижность кровоснабжения органов. Благодаря ус-ловно-безусловно-рефлекторным и гуморальным механизмам во время работы происходит перераспределение крови из внутренних органов к работающим мышцам и одновременно увеличивается объем сосудистого ложа капилляров. Как видно из таблицы 5, во время работы значительно увеличивается число раскрытых капилляров, их поперечник и емкость.

Следует отметить недифференцированность реакции сосудов, как особенность центрально-нервной регуляции. Так, например, при работе одной рукой сопутствующая сосудистая реакция распространяется на все конечности.

Таблица 5

Число капилляров в покоящейся и деятельной мускулатуре

Условия

определения

показателей

Число раскрытых капилляров

в 1 мм 3 мышцы

Поперечник капилляров, Мк

Емкость капилляров, в процентах к объему мышцы

В покое

30 - 250

3.0 - 3.8

0.02 - 0.03

При сокращении

2 500

При максимальном

сокращении

3 000

15.0

Большое значение для оценки функционального состояния организма во время работы имеет кровяное давление, на которое влияют три фактора : величина опорожнения сердца, интенсивность чревного рефлекса и тонус сосудов.

Систолическое (максимальное) давление является показателем энергии, затрачиваемой сердцем, и связано с объемом систолы; в то же время оно характеризует реакцию сосудистых стенок на давление волны крови. Повышение систолического кровяного давления во время работы - показатель усиленной деятельности сердца.

Вследствие повышения при работе максимального давления в сосудистом русле, повышается и пульсовое давление, которое характеризует объем кровоснабжения работающих органов.

Диастолическое (минимальное) давление является показателем сосудистого тонуса, степени расширения сосудов и зависит от сосудодвигательного механизма. При работе минимальное давление изменяется мало. Снижение его свидетельствует о расширении сосудистого ложа и уменьшении периферического сопротивления продвижению крови.

Минутный объем, частота пульса и кровяное давление приходят к исходному уровню после работы значительно позднее, чем показатели других функций. Нередко показатели минутного объема, пульса и кровяного давления в некоторые отрезки восстановительного периода ниже, чем исходные, что свидетельствует о незавершенном еще процессе восстановления.

Во время выполнения мышечной работы и в течение восстановительного периода наблюдаются многофазные изменения функционального состояния центральной нервной системы. Ю.М. Данько описывает три фазы изменения функционального состояния центральной нервной системы во время работы и три фазы после ее прекращения.

Первая фаза изменений, возникающая в начале работы и соответствующая периоду врабатываемости, является фазой инерционного торможения, характеризующего начальные усилия. Эта фаза кратковременна.

Вторая фаза - состояние рабочего возбуждения, появляющаяся в процессе дальнейшего выполнения работы. Длительность этой фазы зависит от тяжести работы.

Третья фаза - состояние вторичного, или охранительного, торможения, возникающего к концу тяжелой утомительной работы.

После прекращения работы первой фазой периода восстановления (четвертая фаза) является состояние после рабочего возбуждения, наблюдающегося в течение короткого времени.

Вторая фаза (пятая) - период после рабочего торможения, длительность которого тем больше, чем тяжелее была работа.

Третья фаза (шестая) - период восстановления возбудимости, протекающей часто волнообразно через фазу повышения возбудимости (экзальтация).

Принципиально такая же динамика функционального состояния центральной нервной системы наблюдается и при статической работе.

При статическом напряжении первой фазой является иррадиация возбуждения с двигательного анализатора, вследствие чего повышается рефлекторная деятельность организма. Ограниченный, достаточной силы очаг возбуждения вызывает вторую фазу индукционных отношений с изменением мозаики очагов возбуждения и торможения, с превалированием тормозных процессов. Третья фаза - иррадиация торможения , после чего наступает утомление.

По окончании статического напряжения часто наблюдается четвертая фаза - последовательная положительная индукция и усиление выше нормы ранее заторможенных функций. Эта фаза кратковременна и сменяется более длительной пятой фазой , характеризующейся развитием последовательного торможения, сменяющегося нередко усилением возбудимости, после чего все функции приходят к норме.

Фазность изменений функционального состояния центральной нервной системы при работе характеризуется соответствующими для каждой фазы показателями высшей нервной деятельности. Так, при возбуждении наблюдается повышение величины условных рефлексов, укорочение латентного периода, упрочение дифференцировочного торможения, увеличение скорости сенсомоторных реакций, частоты биотоков мозга ( -ритм), усиленный распад гликогена, АТФ, креатинфосфата и др.

В фазе торможения наблюдаются обратные процессы: снижение величины условных рефлексов, удлинение латентного периода, увеличение числа случаев растормаживания дифференцировок, уменьшение скорости сенсомоторных реакций, появление 3-ритмов электрической активности мозга, а в дальнейшем  -ритмов, нарушение закона силовых отношений (фазные состояния), запредельное торможение.

Отметим также, что в фазе торможения, в головном мозге, восстанавливаются и энергетические вещества (АТФ, АДФ). Торможение в клетках коры, практически, предназначено для восстановления их состояния.

Таким образом, трудовая деятельность человека предполагает закономерные изменения в его внутренних средах, органах и системах, знание которых необходимо для рационального планирования режимов труда и отдыха, обеспечения мероприятий для высокой производительности труда, активного долголетия, предупреждения болезней от работы.

Мы затронули только небольшую часть знаний о влиянии труда на человеческий организм. Так, не обсудили проблемы терморегуляции при выполнении работы, роль кожи в этих процессах. Подчеркну, что знание этих закономерностей позволяет обосновывать гигиенические требования к параметрам производственного микроклимата.

Также не обсуждали роль зрительного, слухового анализатора в труде, что очень важно при обсуждении гигиенических требований к производственному освещению, передаче информации и пр. В целом рассмотрели аспекты изменений при физическом труде, при интеллектуальной деятельности эти изменения имеют и сходство, и существенные отличия.

Остаётся надеяться, что эти пробелы будут рассмотрены при обсуждении дальнейших вопросов лекционного и практического курса гигиены труда.

При переходе к рабочему уровню необходима перестройка функций различных органов и систем на более высокий уровень активности и новое межсистемное согласование на рабочем уровне.

В различных отделах ЦНС создается функциональная система нервных центров , обеспечи­вающая выполнение задуманной цели действия на основе анализа внешней информации, действующих в данный момент мотиваций и хранящихся в мозгу памятных следов двигательных навыков и тактических комбинаций. В пределах доминирующих нервных цен­тров создается цепь условных и безусловных рефлексов или двигательный динамический стереотип, облегчающий последовательное выполнение одинаковых движений (в циклических упражнениях) или программы раз­личных двигательных актов (в ациклических упражнениях).

В спинном мозгу за 60 мс перед началом двигательного акта повыша­ется возбудимость мотонейронов, что отражается в нарастании амплитуды вызываемых в этот момент спинальных рефлексов (Н-рефлексов).

В двигательном аппарате при работе повышаются возбу­димость и лабильность работающих мышц , повышается чувствитель­ность их проприорецепторов, растет температура и снижается вязкость мышечных волокон. В мышцах дополнительно открываются капилляры, которые в состоянии покоя находились в спавшемся состоянии, и улучша­ется кровоснабжение. Однако при больших статических напряжениях (более 30% максимального усилия) кровоток в мышцах резко затрудняется или вовсе прекращается из-за сдавливания кровеносных сосудов. Нервные импульсы, приходящие в мышцу с небольшой частотой, вызывают слабые одиночные сокращения мышечных волокон, а при повышении частоты - их более мощные тетанические сокращения.

Различные двигательные единицы (ДЕ) в целой скелетной мышце при длительных физических нагрузках вовлекаются в работу попеременно восстанавливаясь в периоды отдыха, а при больших кратковременных на­пряжениях - включаются синхронно. В зависимости от мощности работы активируются разные ДЕ: при небольшой интенсивности работы активны лишь высоковозбудимые и менее мощные медленные ДЕ, а с повышением мощности работы - промежуточные и, наконец, маловозбудимые , но наи­более мощные быстрые ДЕ.

Дыхание значительно увеличивается при мышечной работе - рас­тет глубина дыхания (до 2-3 л) и частота дыхания (до 40-60 вдохов в 1мин). Минутный объем дыхания при этом может увеличиваться до 150-200 л мин -1 .Однако большое потребление кислорода дыхательными мышцами (до 1л мин -1) делает нецелесообразным предельное напряжение внешнего дыхания.

Сердечно-сосудистая система , участвуя в доставке ки­слорода работающим тканям, претерпевает заметные рабочие изменения. Увеличивается систолический объем крови (при больших нагрузках у спортсменов до 150-200 мл), нарастает ЧСС (до 180 уд мин -1 и более), растет минутный объем крови (у тренированных спортсменов до 35 л мин -1 и более). Происходит перераспределение крови в пользу работаю­щих органов - главным образом, скелетных мышц, а также сердечной мышцы, легких, активных зон мозга - и снижение кровоснабжения внут­ренних органов и кожи. Перераспределение крови тем более выражено, чем больше мощность работы. Количество циркулирующей крови при работе увеличивается за счет ее выхода из кровяных депо. Увеличивается скорость кровотока, а время кругооборота крови снижается вдвое.


В системе крови наблюдается увеличение количества формен­ных элементов. В зависимости от тяже­сти работы проявляются различные стадии миогенного лейкоцитоза. Не­большие тренировочные нагрузки вызывают появление 1-й стадии - лимфоцитарной с преобладанием в лейкоцитарной формуле лимфоцитов и ростом общего количества лейкоцитов. Более значитель­ные нагрузки, особенно в соревнованиях, вызывают появление 2-й стадии или 1-й нейтрофильной с ростом количества нейтрофилов и увеличением количества лейкоцитов. Истощающая нагрузка приводит к 3-й стадии или 2-й - нейтрофильной с резким ростом количества лейкоцитов в крови, преоб­ладанием незрелых форм нейтрофилов и исчезновением других форм лей­коцитов (эозинофилов, базофилов).

При работе увеличивается отдача кислорода из крови в ткани. Соответ­ственно, становится больше артериовенозная разность по кислороду и коэффициент использования кислорода.

Рост кислородного долга при передвижениях спортсменов на средних и длинных дистанциях сопровождается увеличением в крови концентрации молочной кислоты и снижением рН крови. В связи с потерей воды и увеличением количества форменных элементов повышение вязкости кро­ви достигает 70%.

При циклических упражнениях различной длительности с увеличением дистанции снижаются единичные энерготраты (ккал в 1с) и растут суммар­ные энерготраты (до 2-3 ккал на всю работу), а анаэробный путь энергопродукции (за счет АТФ, КрФ и гликолиза) сменяется постепенно аэроб­ным путем (за счет окисления углеводов, а затем и жиров).

Функциональные изменения в организме спортсмена зависят от харак­тера физической нагрузки. Если работа совершается с относительно посто­янной мощностью (что характерно для циклических упражнений, выпол­няемых на средних, длинных и сверхдлинных дистанциях), то степень функциональных сдвигов зависит от уровня ее мощности. Чем больше мощность работы, тем больше потребление кислорода в единицу времени , минутный объем крови и дыхания, ЧСС, выброс катехоламинов. Эти изме­нения имеют индивидуальные особенности, связанные с генетическими свойствами организма. Функциональные сдвиги также зависят от уровня работоспособности и спортивного мастерства. Имеются также половые и возрастные различия. При одинаковой мощности мышечной ра­боты функциональные сдвиги больше у менее подготовленных лиц, а так­же у женщин по сравнению с мужчинами и у детей по сравнению со взрос­лыми.

Особенно следует отметить прямо пропорциональную зависимость между мощностью работы и ЧСС , которая у взрослых тренированных лиц наблюдается в диапазоне от 130 до 180 уд мин -1 . Эта закономерность позволяет контролировать мощность работы спортсменов на дистанции (например, у пловцов, бегу­нов, лыжников с помощью кардиолидеров), а также она лежит в основе различных тестов физической работоспособности, так как регистрация ЧСС наиболее доступна в естественных условиях двигательной деятельно­сти.

Каждое изменение мощности работы требует нового сдвига ак­тивности различных органов и систем организма спортсмена. При этом быстрые изменения в деятельности ЦНС и двигательного аппарата не могут сопровождаться столь же быстрыми перестройками вегетативного обеспечения работы. На этот переходный процесс затрачивается некоторое время, так называемое время задержки. В это время ткани организма ис­пытывают недостаточность кислородного снабжения и возникает кисло­родный долг.

Вегетативные системы у адаптированных спорт­сменов становятся более лабильными - они легче повышают функцио­нальную активность при повышении мощности работы и быстрее успевают восстанавливаться при каждом ее снижении, даже в процессе работы.

Любой вид трудовой деятельности представляет собой сложный комплекс физиологических процессов, в которых вовлекаются все органы и системы человеческого тела.

Центральная нервная система (ЦНС)

Центральная нервная система обеспечивает координацию функциональных изменений, развивающихся в организме при выполнении работы.

Все рабочие движения и их характер зависят, с одной стороны, от импульсов, идущих из коры головного мозга, с другой стороны, от импульсов, поступающих в центр из периферии из мышц.

Еще до начала работы в организме наблюдаются условно рефлекторные функциональные сдвиги, заключающиеся в повышении обмена веществ, в учащении пульса и дыхания. При этом условными раздражителями являются производственная обстановка и среда.

Установлено, что уровень энергетических процессов, происходящих в мышце, находится в зависимости от импульсов, исходящих из коры головного мозга. Так, основной обмен в рабочий день на 15-30% выше, чем в тот же обмен в нерабочий день, что связано с сигналами, идущими от привычной обстановки предстоящего рабочего дня. Увеличение потребления кислорода начинается уже тогда, когда рабочий только вошел в цех. Следовательно, рабочая обстановка воспринята ЦНС и последней посланы импульсы, подготовившие соответствующие органы и системы к выполнению сменного задания.

В процессе производственного обучения образуется динамический производственный стереотип - система условных рефлексов, определяющая уровень физиологических процессов в организме. Динамический производственный стереотип включает длительность выполнения основных элементов, микропаузы и т.д.

В процессе выполнения работы в ЦНС усиливаются процессы возбуждения. Одновременно углубляются и процессы торможения, благодаря чему между этими основными процессами сохраняется равновесие. При относительно легкой работе подобное состояние может сохраняться в течение всего рабочего дня, при тяжелой работе - с определенного момента в коре большого мозга начинают преобладать процессы охранительного торможения.

Фазность изменения функционального состояния ЦНС определяется характером и длительностью выполняемой работы. В фазе возбуждения наблюдают повышение величины условных рефлексов, увеличение скорости сенсомоторных реакций.

В фазе торможения наблюдаются обратные процессы: снижение величины условных рефлексов, уменьшение скорости сенсомоторных реакций. Характер изменений определяется тяжестью, длительностью работы, а также тренированностью человека.

Мышечная работа различной интенсивности вызывает изменения в деятельности коры головного мозга. Тяжелая физическая нагрузка нередко обуславливает понижение корковой возбудимости, нарушение условно рефлекторной деятельности, а также повышение порога чувствительности зрительного, слухового и тактильного анализаторов.

Напротив, умеренная работа улучшает условно рефлекторную деятельность и снижает восприятия для указанных анализаторов.

Скелетно-мышечная система

Под влиянием нервных импульсов, притекающих из ЦНС, в мышцах происходят характерные для них биохимические и биофизические процессы. Источником химической энергии, превращающейся в механическую работу мышц, является аденозинтрифосфорная кислота (АТФ). Под влиянием нервных импульсов эта кислота взаимодействует с сократительной белковой структурой мышцы, причем происходит диссоциация актомиозина на его компоненты, изменение конфигурации белковых молекул, возникновение электрических зарядов, ферментативное расщепление АТФ миозином и т.д.

Именно комплекс всех явлений и ведет к сокращению мышечного волокна, в процессе которого активно участвуют ионы солей, в первую очередь калия, кальция и магния. Во время расслабления мышцы утратившая фосфор АТФ вновь фосфорилируется за счет фосфокреатинина. Затем начинаются процессы гликолиза и окислительного распада глюкозы, сопровождающегося связыванием фосфорной кислоты, отщепленной от АТФ в процессе сокращения мышцы.

С повышением интенсивности выполняемой нагрузки увеличивается количество потребляемого мышцами кислорода в единицу времени. Поскольку между скоростью потребления кислорода и мощностью работы аэробного характера существует прямая пропорциональная зависимость, поэтому интенсивность работы можно характеризовать скоростью потребления кислорода. При определенной, индивидуальной для каждого человека, нагрузке, достигается максимально возможная скорость потребления кислорода.

Для энергообеспечения мышечной работы кислородная система может использовать в качестве субстратов окисления все питательные вещества - углеводы (гликоген, глюкоза), жиры (жирные кислоты) и белки (аминокислоты).

Во время выполнения легкой работы, то есть при потреблении кислорода до 50% максимальной величины, большая часть энергии для сокращения мышц образуется за счет окисления жиров. Во время более тяжелой работы при потреблении кислорода более 60% от максимального значительную часть энергопродукции обеспечивают углеводы. При работах, близких по потреблению кислорода к максимальному - энергопродукция осуществляется только за счет углеводов.

Существует определенная последовательность включения и преобладания различных путей ресинтеза АТФ по мере выполнения физической нагрузки.

Креатинкиназный путь ресинтеза АТФ обеспечивает начальный этап физической работы. Он запускается очень быстро, протекает максимально эффективно (молекула АТФ из молекулы КФ), идет анаэробно, не дает побочных продуктов.

Затем включается гликолиз. На запуск гликолиза требуется 10-20 секунд. Гликолиз протекает анаэробно, обладает гораздо большим резервом мощности, но мало эффективен. В результате гликолиза значительно возрастает концентрация в мышцах и в крови гликолиза молочной кислоты.

В дальнейшем постепенно начинает превалировать аэробный механизм ресинтеза АТФ.

Конечные продукты - вода и углекислый газ. Избыток углекислоты удаляется через легкие с выдыхаемым воздухом.

Сердечно-сосудистая система

Увеличение потребности работающих мышц в кислороде и в питательных веществах ведет к тому, что при физическом труде заметно усиливается деятельность сердечно-сосудистой системы, где физическая нагрузка вызывает возрастание минутного объема вследствие учащения сокращений и увеличения ударного объема сердца.

Пульс с 60-70 ударов в минуту в покое учащается при некоторых видах работ до 90-150 и больше. Как правило, через 15-30 секунд после начала (а иногда рефлекторно и до работы) пульс учащается, достигает известной величины, зависящей от мощности работы, и держится на этом уровне в течение всей работы. Это дает право рекомендовать счет пульса - частоты сердечных сокращений (ЧСС) как простой и доступный метод контроля за состоянием работающего во время физической работы и за течением восстановительных процессов во время отдыха. В результате работы минутный объем крови, выбрасываемой сердцем, может возрасти с 3-5 до 30-40 л. На 5-30 мм рт.ст. может повыситься максимальное артериальное давление.

Увеличение минутного объема сердца происходит за счет учащения сокращений и увеличения ударного (систолического) объема сердца. Систолический объем сердца в покое колеблется в пределах 60-80 мл, при мышечной работе он может увеличиваться вдвое и больше. Между интенсивностью работы и частотой пульса имеется определенная зависимость. Так, при легких работах частота пульса не превышает 100-120 ударов в мин.

При тяжелых работах частота пульса может достигать 140-160 и более ударов в минуту. Во время тяжелой работы ЧСС возрастает до максимума, величина которого неодинакова у разных людей. При легкой работе и работе средней тяжести ЧСС увеличивается и стабилизируется на уровне, обеспечивающем потребности организма в кислороде.

Изменение пульса в процессе работы в значительной степени зависит от тренированности. У тренированного человека частота пульса при прочих равных условиях всегда меньше, чем у нетренированного. У нетренированных людей возрастание минутного объема сердца в процессе работы обеспечивается в основном за счет учащения числа сердечных сокращений, у тренированных - за счет увеличения систолического объема.

После прекращения работы частота пульса резко снижается. Однако время восстановления пульса до исходной величины в значительной степени определяется тяжестью выполненной работы. Восстановительный период составляет при:

Легкой работе - 2-4 мин.;

Средней тяжести - 30 мин.;

Тяжелой - 65-70 мин.

Восстановительный период обусловлен накоплением в работающих органах недоокисленных продуктов обмена.

Под влиянием импульсов из ЦНС, а также в результате сосудорасширяющего действия продуктов мышечного сокращения (молочная кислота) значительно расширяются кровоносные сосуды скелетных мышц, развивается сеть мышечных капилляров, но сами капилляры сужаются. Этим достигается лучшее кровоснабжение работающей мышцы и удаление продуктов обмена.

Дыхательная система

Дыхательная система, так же как и сердечно-сосудистая, в самом начале работы обнаруживает значительные сдвиги в сторону усиления своей деятельности. Повышение вентиляции, так же как учащение пульса, может иметь место в порядке условного рефлекса и в дорабочий период. Величина легочной вентиляции, и характер дыхания зависят как от индивидуальных особенностей, так и от степени тренированности человека.

В покое число дыханий в минуту составляет от 8 до 22, а легочная вентиляция - 4-10 л/мин. При работе потребление кислорода увеличивается в 10-15 раз. Вентиляция при выполнении тяжелой работы может достигать за счет учащения дыхания (30-40 раз в минуту) и увеличения глубины вдоха (40-60 л/мин.). У тренированных людей увеличение легочной вентиляции осуществляется главным образом за счет усиления глубины дыхания.

Количество кислорода в минуту, необходимое для полного окисления продуктов распада, носит название кислородный запрос, максимальное же количество кислорода, которое организм может получить в минуту, - кислородный потолок.

Обычно кислородный потолок при выполнении физической работы у нетренированных людей составляет около 3 л/мин., а у тренированных может достигать 4-5 л/мин.

Важно заметить, что потребление кислорода в начале работы растет и только через 2-3 мин. устанавливается на определенном уровне, т.е. наступает его устойчивое состояние.

Вначале работа производится при неполном удовлетворении кислородного запроса, вследствие чего накапливается кислородный долг. Это объясняется тем, что энергетические процессы в мышце при сокращении ее происходят мгновенно, а доставка кислорода увеличивается не сразу. И только когда доставка кислорода соответствует кислородному запросу, наступает устойчивое состояние потребления кислорода.

Кислородный долг, образовавшийся в начале работы, полностью погашается уже после прекращения работы, в период восстановления. Это касается работы легкой и средней тяжести. При тяжелой работе потребление кислорода все время растет вплоть до достижения кислородного потолка. Если кислородный запрос при работе превышает кислородный потолок, то наступает так называемое ложное устойчивое состояние; при этом потребление кислорода отражает лишь кислородный потолок, а не истинную потребность в кислороде. Восстановительный период при этом значительно удлиняется.

Восстановление потребления кислорода еще не означает восстановления всех функций организма. Напротив, другие функции, зависящие от состояния сердечно-сосудистой, дыхательной и других систем, еще значительное время не достигают своего исходного уровня.

Изменения крови

При выполнении мышечной работы в крови можно отметить некоторые характерные явления. При тяжелой физической работе отмечается увеличение числа эритроцитов, повышение количества гемоглобина и некоторое повышение вязкости крови, количество лейкоцитов может увеличиться в три раза. Возрастает в целом масса циркулирующей в организме крови за счет выхода ее из депо - селезенки, печени, кожи. Аналогично лейкоцитоз развивается главным образом за счет выхода нейтрофилов и лимфоцитов из депо. Число лейкоцитов может достигать 15-20 109/л. Через 1-2 ч после тяжелой работы возможен вторичный лейкоцитоз за счет усиления кроветворения и поступление в кровь нейтрофилов.

Из биохимических изменений крови обращает на себя внимание динамика содержания сахара (глюкозы). Обычно в состоянии покоя содержание глюкозы в крови составляет 4,4-4,95 ммоль/л. В начале работы количество глюкозы в крови увеличивается, что объясняется условно-рефлекторными влияниями. При выполнении привычной работы, особенно тренированным человеком, содержание глюкозы в крови несколько уменьшается, потом несколько повышается и держится примерно на одном уровне, вследствие того, что повышается выход сахара из печени.

Выраженное снижение содержания глюкозы в крови наступает при выполнении тяжелой и длительной работы. Уровень глюкозы ниже 3,3 ммоль/л свидетельствует о тяжелой работе и недостаточной тренированности.

Падение уровня сахара во время работы нужно расценивать как неблагоприятный факт (истощение либо недостаточная мобилизация углеводных ресурсов). Практическое значение этого может состоять в рекомендации перерыва в работе для приема пищи.

При выполнении работ различной тяжести отмечается изменение содержания в крови молочной кислоты: если в норме ее содержится 1,1-2,8 мкмоль/л, то при очень тяжелой работе - 5,6-6,7 мкмоль/л. Работа легкая или средней тяжести не вызывает накопление молочной кислоты, так как она успевает окислиться и ресинтезироваться.

Длительные физические усилия умеренной сложности вызывают только первоначальное повышение содержания молочной кислоты в крови. Резкое повышение содержания молочной кислоты наблюдается при тяжелых работах, производимых в условиях кислородной задолженности. Повышение содержания молочной кислоты сопровождается одновременным падением резервной щелочности крови. Щелочной резерв крови является показателем способности крови связывать кислые продукты. При кратковременной интенсивной работе отмечается снижение щелочного резерва. При этом, чем больше содержание молочной кислоты, тем ниже показатель щелочного резерва.

Необходимо также отметить, что в результате повышения концентрации водородных ионов может ускоряться диссоциация оксигемоглобина, увеличиваться напряжение кислорода в плазме крови и скорость его перехода в ткани. Благодаря этому при работе значительно повышается коэффициент утилизации кислорода, особенно у тренированных лиц.

Особую роль в сосудистой регуляции играют продукты обмена (гистамин, адениловая кислота, ацетилхолин), а также адреналин, суживающий сосуды внутренних органов, и антидиуретический гормон (вазопрессин), действующий на артериолы и капилляры.

При выполнении работы содержание углекислоты в крови уменьшается. Это обусловлено связыванием углекислого газа катионами и вымыванием из крови при гипервентиляции.

Температура тела

Во время работы происходит изменение температуры тела. При выполнении некоторых видов тяжелой мышечной работы она может доходить до 38,5-39,3о.

При интенсивной умственной работе может повышаться температура кожи головы.

Возрастание теплопродукции в работающих мышцах сопровождается увеличением теплоотдачи через расширяющиеся сосуды кожи и путем испарения пота.

В то же время как небольшое повышение температуры тела при работе является благоприятным фактором, стимулирующим обмен веществ, тканевое дыхание, улучшающим условия утилизации кислорода, значительное повышение ее при работе нельзя признать благоприятным. При этом происходит усиленный распад белковых соединений, ухудшаются условия работы сердечно-сосудистой системы, нервных центров, значительно увеличивается расход энергии на внешнюю работу, усиливается потоотделение, изменяется водно-солевой режим организма (особенно при работе в горячих цехах или при выполнении тяжелой физической работы). При этом значительное повышение деятельности потовых желез может снижать выделительную функцию почек. Для пополнения влагопотерь рабочие, выполняющие тяжелые физические работы, должны выпивать большее количество жидкости, чем при легких работах (до 4-5 л за смену).

Следует отметить, что при тяжелой физической нагрузке возможно торможение секреции и моторной функции желудка, а также замедление переваривания и всасываемости пищи.

Физические нагрузки вызывают перестройки различных функций организма, особенности и степень которых зависят от мощности, характера двигательной деятельности, уровня здоровья и тренированности. О влиянии физических нагрузок на человека можно судить только на основе всестороннего учета совокупности реакций целостного организма, включая реакцию со стороны центральной нервной системы (ЦНС), сердечно-сосудистой системы (ССС), дыхательной системы, обмена веществ и др. Следует подчеркнуть, что выраженность изменений функций организма в ответ на физическую нагрузку зависит, прежде всего, от индивидуальных особенностей человека и уровня его тренированности. В основе развития тренированности, в свою очередь, лежит процесс адаптации организма к физическим нагрузкам. Адаптация - совокупность физиологических реакций, лежащая в основе приспособлений организма к изменению окружающих условий и направленная на сохранение относительного постоянства его внутренней среды - гомеостаза.

В понятиях «адаптация, адаптированность», с одной стороны, и «тренировка, тренированность», с другой стороны, много общих черт, главной из которых является достижение нового уровня работоспособности. Адаптация организма к физическим нагрузкам заключается в мобилизации и использовании функциональных резервов организма, совершенствовании имеющихся физиологических механизмов регуляции. Никаких новых функциональных явлений и механизмов в процессе адаптации не наблюдается, просто имеющиеся уже механизмы начинают работать совершеннее, интенсивнее и экономичнее (урежение сердцебиения, углубление дыхания и др.).

Процесс адаптации связан с изменениями в деятельности всего комплекса функциональных систем организма (сердечно-сосудистая, дыхательная, нервная, эндокринная, пищеварительная, сенсомоторная и др. системы). Разные виды физических упражнений предъявляют различные требования к отдельным органам и системам организма. Правильно организованный процесс выполнения физических упражнений создает условия для совершенствования механизмов, поддерживающих гомеостаз. В результате этого сдвиги, происходящие во внутренней среде организма, быстрее компенсируются, клетки и ткани становятся менее чувствительными к накоплению продуктов обмена веществ.

Среди физиологических факторов, определяющих степень адаптации к физическим нагрузкам, большое значение имеют показатели состояния систем, обеспечивающих транспорт кислорода, а именно - система крови и дыхательная система.

Кровь и кровеносная система

В организме взрослого человека содержится 5–6 л крови. В состоянии покоя 40–50 % ее не циркулирует, находясь в так называемом «депо» (селезенка, кожа, печень). При мышечной работе увеличивается количество циркулирующей крови (за счет выхода из «депо»). Происходит ее перераспределение в организме: большая часть крови устремляется к активно работающим органам: скелетным мышцам, сердцу, легким. Изменения в составе крови направлены на удовлетворение возросшей потребности организма в кислороде. В результате увеличения количества эритроцитов и гемоглобина повышается кислородная емкость крови, т. е. увеличивается количество кислорода, переносимого в 100 мл крови. При занятиях спортом увеличивается масса крови, повышается количество гемоглобина (на 1–3 %), увеличивается число эритроцитов (на 0,5–1 млн. в кубическом мм), возрастает количество лейкоцитов и их активность, что повышает сопротивляемость организма к простудным и инфекционным заболеваниям. В результате мышечной деятельности активизируется система свертывания крови. Это одно из проявлений срочной адаптации организма к воздействию физических нагрузок и возможным травмам с последующим кровотечением. Программируя «с опережением» такую ситуацию, организм повышает защитную функцию системы свертывания крови.

Двигательная деятельность оказывает существенное влияние на развитие и состояние всей системы кровообращения. В первую очередь, изменяется само сердце: увеличиваются масса сердечной мышцы и размеры сердца. У тренированных масса сердца составляет в среднем 500 г, у нетренированных - 300.

Сердце человека чрезвычайно легко поддается тренировке и как ни один другой орган нуждается в ней. Активная мышечная деятельность способствует гипертрофии сердечной мышцы и увеличению его полостей. Объем сердца у спортсменов больше на 30 %, чем у не занимающихся спортом. Увеличение объема сердца, особенно его левого желудочка, сопровождается повышением его сократительной способности, увеличением систолического и минутного объемов.

Физическая нагрузка способствует изменению деятельности не только сердца, но и кровеносных сосудов. Активная двигательная деятельность вызывает расширение кровеносных сосудов, снижение тонуса их стенок, повышение их эластичности. При физических нагрузках почти полностью раскрывается микроскопическая капиллярная сеть, которая в покое задействована всего на 30–40 %. Все это позволяет существенно ускорить кровоток и, следовательно, увеличить поступление питательных веществ и кислорода во все клетки и ткани организма.

Работа сердца характеризуется непрерывной сменой сокращений и расслаблений его мышечных волокон. Сокращение сердца называется систолой, расслабление - диастолой. Количество сокращений сердца за одну минуту - частота сердечных сокращений (ЧСС). В состоянии покоя у здоровых нетренированных людей ЧСС находится в пределах 60–80 уд/мин, у спортсменов - 45–55 уд/мин и ниже. Урежение ЧСС в результате систематических занятий физическими упражнениями называется брадикардией. Брадикардия препятствует «изнашиванию миокарда и имеет важное оздоровительное значение. На протяжении суток, в течение которых не было тренировок и соревнований, сумма суточного пульса у спортсменов на 15–20 % меньше, чем у лиц того же пола и возраста, не занимающихся спортом.

Мышечная деятельность вызывает учащение сердцебиения. При напряженной мышечной работе ЧСС может достигать 180–215 уд/мин. Следует отметить, что увеличение ЧСС имеет прямо пропорциональную зависимость с мощностью мышечной работы. Чем больше мощность работы, тем выше показатели ЧСС. Тем не менее, при одинаковой мощности мышечной работы ЧСС у менее подготовленных лиц значительно выше. Кроме того, при выполнении любой двигательной деятельности ЧСС изменяется в зависимости от пола, возраста, самочувствия, условий занятий (температура, влажность воздуха, время суток и т. д.).

При каждом сокращении сердца кровь выбрасывается в артерии под большим давлением. В результате сопротивления кровеносных сосудов ее передвижение в них создается давлением, называемое кровяным давлением. Наибольшее давление в артериях называют систолическим или максимальным, наименьшее - диастолическим или минимальным. В состоянии покоя у взрослых людей систолическое давление составляет 100–130 мм рт. ст., диастолическое - 60–80 мм рт. ст. По данным Всемирной организации здравоохранения, артериальное давление до 140/90 мм рт. ст. является нормотоническим, выше этих величин - гипертоническим, а ниже 100–60 мм рт. ст. - гипотоническим. В процессе выполнения физических упражнений, а также после окончания тренировки, артериальное давление обычно повышается. Степень его повышения зависит от мощности выполненной физической нагрузки и уровня тренированности человека. Диастолическое давление изменяется менее выражено, чем систолическое. После длительной и очень напряженной деятельности (например, участие в марафоне) диастолическое давление (в некоторых случаях и систолическое) может быть меньше, чем до выполнения мышечной работы. Это обусловлено расширением сосудов в работающих мышцах.

Важными показателями производительности сердца являются систолический и минутный объем. Систолический объем крови (ударный объем) - это количество крови, выбрасываемой правым и левым желудочками при каждом сокращении сердца. Систолический объем в покое у тренированных - 70–80 мл, у нетренированных - 50–70 мл. Наибольший систолический объем наблюдается при ЧСС 130–180 уд/мин. При ЧСС свыше 180 уд/мин он сильно снижается. Поэтому наилучшие возможности для тренировки сердца имеют физические нагрузки в режиме 130–180 уд/мин. Минутный объем крови - количество крови, выбрасываемое сердцем за одну минуту, зависит от ЧСС и систолического объема крови. В состоянии покоя минутный объем крови (МОК) составляет в среднем 5–6 л, при легкой мышечной работе увеличивается до 10–15 л, при напряженной физической работе у спортсменов может достигать 42 л и более. Увеличение МОК при мышечной деятельности обеспечивает повышенную потребность органов и тканей в кровоснабжении.

Дыхательная система

Изменения показателей дыхательной системы при выполнении мышечной деятельности оцениваются по частоте дыхания, жизненной емкости легких, потреблением кислорода, кислородным долгом и другими более сложными лабораторными исследованиями. Частота дыхания (смена вдоха и выдоха и дыхательной паузы) - количество дыханий в одну минуту. Определение частоты дыхания производится по спирограмме или по движению грудной клетки. Средняя частота у здоровых лиц 16–18 в минуту, у спортсменов - 8–12. При физической нагрузке частота дыхания увеличивается в среднем в 2–4 раза и составляет 40–60 дыхательных циклов в минуту. С учащением дыхания неизбежно уменьшается его глубина. Глубина дыхания - это объем воздуха спокойного вдоха и ли выдоха при одном дыхательном цикле. Глубина дыхания зависит от роста, веса, размера грудной клетки, уровня развития дыхательных мышц, функционального состояния и степени тренированности человека. Жизненная емкость легких (ЖЕЛ) - наибольший объем воздуха, который можно выдохнуть после максимального вдоха. У женщин ЖЕЛ составляет в среднем 2,5–4 л, у мужчин - 3,5–5 л. Под влиянием тренировки ЖЕЛ возрастает, у хорошо тренированных спортсменов она достигает 8 л. Минутный объем дыхания (МОД) характеризует функцию внешнего дыхания, определяется произведением частоты дыхания на дыхательный объем. В покое МОД составляет 5–6 л, при напряженной физической нагрузке возрастает до 120–150 л/мин и более. При мышечной работе ткани, особенно скелетные мышцы, требуют значительно больше кислорода, чем в покое, и вырабатывают больше углекислого газа. Это приводит к увеличению МОД, как за счет учащения дыхания, так и вследствие увеличения дыхательного объема. Чем тяжелее работа, тем относительно больше МОД (табл. 2.2).

Таблица 2.2

Средние показатели реакции сердечно-сосудистой

и дыхательной систем на физическую нагрузку

Параметры

При интенсивной физической нагрузке

Частота сердечных сокращений

50–75 уд/мин

160–210 уд/мин

Систолическое артериальное давление

100–130 мм рт. ст.

200–250 мм рт. ст.

Систолический объем крови

150–170 мл и выше

Минутный объем крови (МОК)

30–35 л/мин и выше

Частота дыхания

14 раз/мин

60–70 раз/мин

Альвеолярная вентиляция

(эффективный объем)

120 л/мин и более

Минутный объем дыхания

120–150 л/мин

Максимальное потребление кислорода (МПК) является основным показателем продуктивности как дыхательной, так и сердечно-сосудистой (в целом - кардио-респираторной) систем. МПК - это наибольшее количество кислорода, которое человек способен потребить в течение одной минуты на 1 кг веса. МПК измеряется количеством миллилитров за 1 мин на 1 кг веса (мл/мин/кг). МПК является показателем аэробной способности организма, т. е. способности совершать интенсивную мышечную работу, обеспечивая энергетические расходы за счет кислорода, поглощаемого непосредственно во время работы. Величину МПК можно определить математическим расчетом, используя специальные номограммы; можно в лабораторных условиях при работе на велоэргометре или восхождении на ступеньку. МПК зависит от возраста, состояния сердечно-сосудистой системы, массы тела. Для сохранения здоровья необходимо обладать способностью потреблять кислород как минимум на 1 кг - женщинам не менее 42 мл/мин, мужчинам - не менее 50 мл/мин. Когда в клетки тканей поступает меньше кислорода, чем нужно для полного обеспечения потребности в энергии, возникает кислородное голодание, или гипоксия.

Кислородный долг - это количество кислорода, которое требуется для окисления продуктов обмена веществ, образовавшихся при физической работе. При интенсивных физических нагрузках, как правило, наблюдается метаболический ацидоз различной степени выраженности. Его причиной является «закисление» крови, т. е. накопление в крови метаболитов обмена веществ (молочной, пировиноградной кислот и др.). Для ликвидации этих продуктов обмена нужен кислород - создается кислородный запрос. Когда кислородный запрос выше потребления кислорода в данный момент, образуется кислородный долг. Нетренированные люди способны продолжить работу при кислородном долге 6–10 л, спортсмены могут выполнять такую нагрузку, после которой возникает кислородный долг в 16–18 л и более. Кислородный долг ликвидируется после окончания работы. Время его ликвидации зависит от длительности и интенсивности предыдущей работы (от нескольких минут до 1,5 ч).

Пищеварительная система

Систематически выполняемые физические нагрузки повышают обмен веществ и энергии, увеличивают потребность организма в питательных веществах, стимулирующих выделение пищеварительных соков, активизируют перистальтику кишечника, повышают эффективность процессов пищеварения.

Однако при напряженной мышечной деятельности могут развиваться тормозные процессы в пищеварительных центрах, уменьшающие кровоснабжение различных отделов желудочно-кишечного тракта и пищеварительных желез в связи с тем, что необходимо обеспечивать кровью усиленно работающие мышцы. В то же время сам процесс активного переваривания обильной пищи в течение 2–3 ч после ее приема снижает эффективность мышечной деятельности, так как органы пищеварения в этой ситуации оказываются как бы более нуждающимися в усиленном кровообращении. Кроме того, наполненный желудок приподнимает диафрагму, тем самым, затрудняя деятельность органов дыхания и кровообращения. Вот почему физиологическая закономерность требует принимать пишу за 2,5–3,5 ч до начала тренировки, и через 30–60 минут после нее.

Выделительная система

При мышечной деятельности значительна роль органов выделения, которые выполняют функцию сохранения внутренней среды организма. Желудочно-кишечный тракт выводит остатки переваренной пищи; через легкие удаляются газообразные продукты обмена веществ; сальные железы, выделяя кожное сало, образуют защитный, смягчающий слой на поверхности тела; слезные железы обеспечивают влагу, смачивающую слизистую оболочку глазного яблока. Однако основная роль в освобождении организма от конечных продуктов обмена веществ принадлежит почкам, потовым железам и легким.

Почки поддерживают в организме необходимую концентрацию воды, солей и других веществ; выводят конечные продукты белкового обмена; вырабатывают гормон ренин, влияющий на тонус кровеносных сосудов. При больших физических нагрузках потовые железы и легкие, увеличивая активность выделительной функции, значительно помогают почкам в выводе из организма продуктов распада, образующихся при интенсивно протекающих процессах обмена веществ.

Нервная система в управлении движениями

При управлении движениями ЦНС осуществляет очень сложную деятельность. Для выполнения четких целенаправленных движений необходимо непрерывное поступление в ЦНС сигналов о функциональном состоянии мышц, о степени их сокращения и расслабления, о позе тела, о положении суставов и угла сгиба в них. Вся эта информация передается от рецепторов сенсорных систем и особенно от рецепторов двигательной сенсорной системы, расположенных в мышечной ткани, сухожилиях, суставных сумках. От этих рецепторов по принципу обратной связи и по механизму рефлекса ЦНС поступает полная информация о выполнении двигательного действия и о сравнении ее с заданной программой. При многократном повторении двигательного действия импульсы от рецепторов достигают двигательных центров ЦНС, которые соответственным образом меняют свою импульсацию, идущую к мышцам, с целью совершенствования разучиваемого движения до уровня двигательного навыка.

Двигательный навык - форма двигательной деятельности, выработанная по механизму условного рефлекса в результате систематических упражнений. Процесс формирования двигательного навыка проходит три фазы: генерализации, концентрации, автоматизации.

Фаза генерализации характеризуется расширением и усилением процессов возбуждения, в результате чего в работу вовлекаются лишние группы мышц, а напряжение работающих мышц оказывается неоправданно большим. В этой фазе движения скованы, неэкономичны, неточны и плохо координированы.

Фаза концентрации характеризуется снижением процессов возбуждения благодаря дифференцированному торможению, концентрируясь в нужных зонах головного мозга. Исчезает излишняя напряженность движений, они становятся точными, экономичными, выполняются свободно, без напряжения, стабильно.

В фазе автоматизации навык уточняется и закрепляется, выполнение отдельных движений становится как бы автоматическим и не требует контроля сознания, которое может быть переключено на окружающую обстановку, поиск решений и т. п. Автоматизированный навык отличается высокой точностью и стабильностью всех составляющих его движений.



  • Разделы сайта